
these cases. We must weigh the apparent security pur- 
chased by requiring predicative definitions against the 
burden of having to abandon in many cases what we, as 
mathematicians, consider natural definitions. 

2. It is unclear exactly what objects we are committed to 
when we are committed to Peano Arithmetic. There are 
plenty of problems in number theory whose proofs use 
analytic means, for instance. Does commitment to Peano 
Arithmetic entail commitment to whatever objects are 
needed for these proofs? More generally, does commit- 
ment to a mathematical theory mean commitment to any 
objects needed for solving problems of that theory? If 
so, then Godel's incompleteness theorems suggest that 
it is open what objects commitment to Peano Arithmetic 
entails. 

3. A s  Feferman admits, it is unclear how to account pre- 
dicatively for some mathematics used in currently ac- 
cepted scientific practice, for instance, in quantum me- 
chanics. In addition, I think that Feferman would not 
want to make the stronger claim that all future scien- 
tifically applicable mathematics will be accountable for 
by predicative means. However, the claim that currently 
scientifically applicable mathematics can be accounted 
for predicatively seems too time-bound to play an im- 
portant role in a foundation of mathematics. Though it 
is impossible to predict all future scientific advances, it 
is reasonable to aim at a foundation of mathematics that 
has the potential to support these advances. Whether or 
not predicativity is such a foundation should be studied 
critically. 

4. Whether the use of impredicative sets, and the un- 
countable more generally, is needed for ordinary finite 
mathematics, depends on whether by "ordinary" we 
mean "current." If so, then this is subject to the same 
wony I raised for (3). It also depends on where we draw 
the line on what counts as finite mathematics. If, for in- 
stance, Goldbach's conjecture counts as finite mathe- 
matics, then we have a statement of finite mathematics 
for which it is completely open whether it can be proved 
predicatively or not. 

In emphasizing the degree to which concerns about 
predicativism shape this book, I should not overempha- 
size it. There is much besides predicativism in this book, 
as I have tried to indicate. In fact, Feferman advises that 
we not read his predicativism too strongly. In the pref- 
ace, he describes his interest in predicativity as con- 
cerned with seeing how far in mathematics we can get 
without resorting to the higher infinite, whose justifica- 
tion he thinks can only be platonic. It may turn out that 
uncountable sets are needed for doing valuable mathe- 
matics, such as solving currently unsolved problems. In 
that case, Feferman writes, we "should look to see where 
it is necessary to use them and what we can say about 
what it is we know when we do use them" @. ix). 

Nevertheless, Feferman's committed anti-platonism 
is a crucial influence on the book. For mathematics right 
now, Feferman thinks, "a little bit goes a long way," as 
one of the essay titles puts it. The full universe of sets 

admitted by the platonist is unnecessary, he thinks, for 
doing the mathematics for which we must currently ac- 
count. Time will tell if future developments will support 
that view, or whether, like Brouwer's view, it will re- 
quire the alteration or outright rejection of too much 
mathematics to be viable. Feferman's book shows that, 
far from being over, work on the foundations of mathe- 
matics is vibrant and continuing, perched deliciously but 
precariously between mathematics and philosophy. 
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REVIEWED BY JONATHAN M. BORWEIN 

L ists, challenges, and competitions have a long and pri- 
marily lustrous history in mathematics. This is the story 

of a recent highly successful challenge. The book under re- 
view makes it clear that with the continued advance of com- 
puting power and accessibility, the view that "real mathe- 
maticians don't compute" has little traction, especially for 
a newer generation of mathematicians who may readily 
take advantage of the maturation of computational pack- 
ages such as Maple, Mathmatica, and MATLAB. 

Numerical Analysis Then and Now 
George Phillips has accurately called Archimedes the first nu- 
merical analyst [2, pp. 165-1691. In the process of obtaining 
his famous estimate 3 + 10171 < .ir < 3 + 117, he had to mas- 
ter notions of recursion without computers, interval analy- 
sis without zero or positional arithmetic, and trigonometry 
without any of our modern analytic scaffolding. . . . Two 
millennia later, the same estimate can be obtained by a 
computer algebra system (31. 



Example 1. A modern computer algebra system can tell 
one that 

since the integral may be interpreted as the area under a 
positive curve. 

This leaves us no wiser as to why! If, however, we ask 
the same system to compute the indefinite integral, we are 
likely to be told that 

Then (1.1) is now rigorously established by differentiation 
and an appeal to Newton's Fundamental theorem of cal- 
culus. 

While there were many fine arithmeticians over the next 
1500 years, this anecdote from Georges Ifrah reminds us 
that mathematical culture in Europe had not sustained 
Archimedes's level up to the Renaissance. 

A wealthy (15th-century) German merchant, seekirzg to 
provide his son wi th  a good business educa,tion, con- 
sulted a learned m a n  as to which European institution 
offered the best training. 'Tf you only want h i m  to be 
able to cope with addition and subtraction," the expert 
replied, "then any French or German university will 
do. But i f  you are intent on  your son going on to mul- 
tiplication and division-assuming th,at he has suffi- 
cient gifts-then you will have to send him to Italy.' 

By the 19th century, Archimedes had finally been out- 
stripped both as a theorist and as an (applied) numerical 
analyst, see [7]. 

I n  1831, Fourier's posthumous work on  equations 
shwwed 33 figures of solution, got wi th  enormous 
labour. Thinkirzg this a good opportunity to illustrate 
the superiority of the method of W. G. Homer, not yet 
known in France, and not much known in England, I 
proposed to one of m y  classes, in 1841, to beat Fourier 
on  this point, as a Christmas exercise. I received sev- 
eral answers, agreeing wi th  each other, to 50 places 
of decimals. I n  1848, I repeated the proposal, request- 
ing that 50 places might be exceeded: I obtained an- 
swers of 75, 65, 63, 58, 57, and 52 places. (Augustus 
De Morgan2) 

De Morgan seems to have been one of the first to mis- 
trust William Shanks's epic computations of Pi-to 527, 
607, and 727 places [2, pp. 147-1611, noting there were too 
few sevens. But the error was only confinned three quar- 
ters of a century later in 1944 by Ferguson with the help of 

a calculator in the last pre-computer calculations of n-- 

though until around 1950 a "computer" was still a person 
and ENlAC was an "Electronic Numerical Integrator and 
Calculator" [2, pp. 277-2811 on which Metropolis and Reit- 
wiesner computed Pi to 2037 places in 1948 and confirmed 
that there were the expected number of sevens. 

Reitwiesner, then working at the Ballistics Research 
Laboratory, Aberdeen Proving Ground in Maryland, starts 
his article [2, pp. 277-2811 with 

Early in June, 1949, Professor JOHN VON NEUMANN ex- 
pressed a n  interest in the possibility that the ENIAC 
might sometime be employed to determine the value of 
n- and e to many  decimal places wi th  a view toward 
obtaining a statistical measure of the randomness of 
distribution of the digits. 

The paper notes that e appears to be too random-this 
is now proven-and ends by respecting an oft-neglected 
"best-practice": 

Values of the auxiliary numbers arccot 5 and arccot 
239 to 20350 . . . have been deposited in the library of 
Brown University and the UMT file of MTAC. 

The 20th century's "Top Ten" 
The digital computer, of course, greatly stimulated both the 
appreciation of and the need for algorithms and for algo- 
rithmic analysis. At the beginning of this century, Sullivan 
and Dongarra could write, "Great algorithms are the poetry 
of computation," when they compiled a list of the 10 algo- 
rithms having "the greatest influence on the development 
and practice of science and engineering in the 20th cen- 

Chronologically ordered, they are: 

#l. 1946: The Metropolis Algorithm for Monte Carlo. 
Through the use of random processes, this algorithm 
offers an efficient way to stumble toward answers to 
problems that are too complicated to solve exactly. 

#2. 1947: Simplex Method for Linear Programming. 
An elegant solution to a common problem in planning 
and decision making. 

#3. 1950: Krylov Subspace Iteration Method. A tech- 
nique for rapidly solving the linear equations that 
abound in scientific computation. 

#4. 1951: The Decompositional Approach to Matrix 
Computations. A suite of techniques for numerical lin- 
ear algebra. 

#5. 1957: The Fortran Optimizing Compiler. Turns 
high-level code into efficient computer-readable code. 

#6. 1959: QR Algorithm for Computing Eigenvalues. 
Another crucial matrix operation made swift and prac- 
tical. 

'From page 577 of The Universal History of Numbers: From Prehistory to the Invention of the Computer, translated from French, John Wiley, 2000. 
'Quoted by Adrian Rice in "What Makes a Great Mathematics Teacher?" on page 542 of The American Mathematical Monthly, JuneJuly 1999. 
3From "Random Samples," Science page 799, February 4, 2000. The full article appeared In the January/February 2000 issue of Computing in Science & Engineering. 
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#7. 1962: Quicksort Algorithms for Sorting. For the ef- 
ficient handling of large databases. 

#8. 1965: Fast Fourier Transform. Perhaps the most 
ubiquitous algorithm in use today, it breaks down 
waveforms (like sound) into periodic components. 

#9. 1977: Integer Relation Detection. A fast method for 
spotting simple equations satisfied by collections of 
seemingly unrelated numbers. 

#lo. 1987: Fast Multipole Method. A breakthrough in 
dealing with the complexity of n-body calculations, 
applied in problems ranging from celestial mechanics 
to protein folding. 

I observe that eight of these ten winners appeared in the 
first two decades of serious computing, and that Newton's 
method was apparently ruled ineligible for con~ideration.~ 
Most of the ten are multiply embedded in every major math- 
ematical computing package. 

Just as layers of software, hardware, and middleware 
have stabilized, so have their roles in scientific, and espe- 
cially mathematical, computing. When I f i s t  taught the sim- 
plex method thirty years ago, the texts concentrated on 
"Y2K-like tricks for limiting storage demands. Now seri- 
ous users and researchers will often happily run large-scale 
problems in MATLAB and other broad-spectrum packages, 
or rely on NAG library routines embedded in Maple. 

While such out-sourcing or commoditization of scien- 
tific computation and numerical analysis is not without its 
drawbacks, I think the analogy with automobile driving in 
1905 and 2005 is apt. We are now in possession of mature- 
not to be confused with "error-freew-technologies. We can 
be fairly comfortable that Mathernatica is sensibly handling 
round-off or cancelation error, using reasonable termina- 
tion criteria and the like. Below the hood, Maple is opti- 
mizing polynomial computations using tools like Homer's 
rule, running multiple algorithms when there is no clear 
best choice, and switching to reduced complexity (Karat- 
suba or FIT-based) multiplication when accuracy so de- 
mands. Wouldn't it be nice, though, if all vendors allowed 
as much peering under the bonnet as Maple does! 

Example 2. The number of additive partitions of n, p(n), 
is generated by 

Thus p(5) = 7, because 

as we ignore "0" and permutations. Additive partitions are 
less tractable than multiplicative ones, for there is no ana- 
logue of unique prime factorization nor the correspond- 
ing structure. Partitions provide a wonderful example of 

41t would be interesting to construct a list of the ten most influential earlier algorithm: 
5A fine model for of 2lst-century databases, it is available at www.research.att.com/ 
6SIAM News, November 1992. 

why Keith Devlin calls mathematics "the science of pat- 
terns." 

Formula (1.2) is easily seen by expanding (1 - qn)-' and 
comparing coefficients. A modern computational tempera- 
ment leads to 

Question: How hard is p(n) to compute-in 1900 (for 
MacMahon the "father of combinatorial analysis") or in 
2000 (for Maple or Mathernatica)? 

Answer: The computation of p(200) = 3972999029388 took 
MacMahon months and intelligence. Now, however, we can 
use the most nave approach: Computing 200 terms of the se- 
ries for the inverse product in (1.2) instantly produces the 
result, using either Mathernatica or Maple. Obtaining the re- 
sult p(500) = 2300165032574323995027 is not much more 
difficult, using the Maple code 

N : =500; coef f ( s e r i e s  ( l / p r o d u c t  
( 1 - q A n , n = l .  . N + l )  , q , N + l )  , q , N )  ; 

Euler's Pentagonal number theorem 
Fifteen years ago computing P(q) in Maple, was very slow, 
while taking the series for the reciprocal Q(q) = nn,l(l - 
qn) was quite manageable! Why? Clearly the series for Q 
must have special properties. Indeed it is lacunary: 

This lacunarity is now recognized automatically by Maple, 
so the platform works much better, but we are much less 
likely to discover Euler's gem: 

If we do not immediately recognue these pentagonal nurn- 
bers, then Sloane's online Encyclopedia of Integer Sequences5 
immediately comes to the rescue, with abundant references 
to boot. 

This sort of mathematical computation is still in its rea- 
sonably early days, but the impact is palpable-and no 
more so than in the contest and book under review. 

About the Contest 
For a generation Nick Trefethen has been at the van- 

guard of developments in scientific computation, both 
through his own research, on topics such as pseudo-spec- 
tra, and through much thoughtful and vigorous activity in 
the community. In a 1992 essay "The Definition of Numer- 
ical Analy~is"~ Trefethen engagingly demolishes the con- 
ventional definition of Numerical Analysis as "the science 
of rounding errors." He explores how this hyperbolic view 
emerged, and finishes by writing, 

I believe that the existme of finite algorithms for cer- 
tain problems, together with other historical forces, has 
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distracted u s  for decades from a balanced view of nu-  
merical analysis. Rounding errors and instability are 
im,portant, and numerical analysts will always be the 
experts in these subjects and at pains to ensure that 
the unwary are not tripped u p  by them. But our cen- 
tral mission i s  to compute quantities that are typically 
uncomputable, from a n  analytical point of view, and 
to do i t  wi th  lightning speed. For guidance to the fu- 
ture we should study not Gaussian elimination and 
its beguiling stability properties, but the diabolically 
fast conjugate gradient iteration, or Greengard and 
Rokhlin's O(N) multipole algorithm for particle simu- 
lations, or the exponential convergence of spectral 
methods for solving certain PDEs, or the convergerm 
in O(N) iterations achieved by multigrid methods for 
many  kinds of problems, or even Bomoein and Bor- 
wein's7 magical AGM iteration for determining 
1,000,000 digits of .ir in the blink of a n  eye. That i s  the 
heart of numerical analysis. 

In the January 2002 issue of SIAM News, Nick Trefethen, 
by then of Oxford University, presented ten diverse prob- 
lems used in teaching modern graduate numerical analysis 
students at Oxford University, the answer to each being a 
certain real number. Readers were challenged to compute 
ten digits of each answer, with a $100 prize to be awarded 
to the best entrant. Trefethen wrote, "If anyone gets 50 dig- 
its in total, I will be impressed." 

And he was. A total of 94 teams, representing 25 dif- 
ferent nations, submitted results. Twenty of these teams 
received a full 100 points (10 correct digits for each prob- 
lem). They included the late John Boersma, working with 
Fred Simons and others; Gaston Gonnet (a Maple 
founder) and Robert Israel; a team containing Carl De- 
vore; and the authors of the book under review variously 
working alone and with others. These results were much 
better than expected, but an originally anonymous donor, 
William J. Browning, provided funds for a $100 award to 
each of the twenty perfect teams. The present author, 
David B a i l e ~ , ~  and Greg Fee entered, but failed to qual- 
ify for an award.g 

The ten challenge problems 

The purpose of computing i s  insight, not numbers. 
(Richard Hamming lo) 

The ten problems are: 
#I. What is 1; x-l cos(xpl log x)dx? 
#2. A photon moving at speed 1 in the x-y plane starts at 

t = 0 at (x,y) = (1/2, 1/10) heading due east. Around 
every integer lattice point ( i ,  ~2 in the plane, a circu- 
lar mirror of radius 113 has been erected. How far from 
the origin is the photon at t = lo? 

#3. The infinite matrix A with entries all = I ,  a12 = 1/2, 
azl = 1/3, a13 = 114, a22 = 115, a31 = 1/6, etc., is a 
bounded operator on t2. What is IBll? 

#4. What is the global minimum of the function 
exp(sin(50x)) + sin(60eY) + sin(7O sin x) + 
sin(sin(80y)) - sin(lO(x + y)) + (9 + y2)/4? 

#5. Let f(z) = l/T(z), where T(x) is the gamma function, 
and let p(z) be the cubic polynomial that best ap- 
proximates f(z) on the unit disk in the supremum 
norm 1 1  . 11,. What is Ilf - pll,? 

#6. A flea starts at (0,O) on the infinite 2-D integer lattice 
and executes a biased random walk: At each step it 
hops north or south with probability 1/4, east with 
probability 1/4 + E, and west with probability 1/4 - E. 

The probability that the flea returns to (0,O) sometime 
during its wanderings is 1/2. What is E? 

#7. Let A be the 20000 X 20000 matrix whose entries are 
zero everywhere except for the primes 2, 3, 5, 7, . . . , 
224737 along the main diagonal and the number 1 in 
all the positions a, with i - j = 1,2,4,8,  . . . , 16384. 
What is the (1,l) entry of Apl? 

#8. A square plate [-1,1] X [-l,l] is at temperature 
u = 0. At time t = 0 the temperature is increased to 
u = 5 along one of the four sides while being held 
at u = 0 along the other three sides, and heat then 
flows into the plate according to u, = Au. When 
does the temperature reach u = 1 at the center of 
the plate? 

#9. The integral I(a) = 1; [2 + sin(lOa)]xa sin(d(2 - x)) 
dx depends on the parameter a. What is the value a E 
[0,5] at which I(a) achieves its maximum? 

#lo. A particle at the center of a 10 x 1 rectangle under- 
goes Brownian motion (i.e., 2-D random walk with in- 
finitesimal step lengths) till it hits the boundary. What 
is the probability that it hits at one of the ends rather 
than at one of the sides? 

Answers correct to 40 digits to the problems are avail- 
able at http://web.comlab.ox.ac.uk~ouc~worWnick.trefethed 
hundred.htm1 

Quite full details on the contest and the now substantial 
related literature are beautifully recorded on Bornemann's 
Web site 

http:/lwww-m8.ma.tum.de/m3/bornemann/challenge 
booW 
which accompanies The SIAM 100-digit Challenge: A Study 
In High-accuracy Nume?-ical Computing, which, for brevity, 
I shall call The Challenge. 

About the Book and Its Authors 
Success in solving these problems requires a broad knowl- 
edge of mathematics and numerical analysis, together with 

/As in many cases, this eponym is inaccurate, if flattering: it really should be Gauss-Brent-Salamin. 
8Bailey wrote the introduction to the book under review. 
gWe took Nick at his word and turned in 85 digits! We thought that would be a good enough entry and returned to other activities. 
' Oln Numerical Methods for Scientists wd Engineers, 1962. 
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significant computational effort, to obtain solutions and en- 
sure correctness of the results. The strengths and limita- 
tions of Maple, Mathematica, MATLAB (The 3Ms), and other 
software tools such as PAR1 or GAP, are strikingly revealed 
in these ventures. Almost all of the solvers relied in large 
part on one or more of these three packages, and while 
most solvers attempted to confirm their results, there was 
no explicit requirement for proofs to be provided. In De- 
cember 2002, Keller wrote: 

To the Editor: 
Recently, SIAM News published a n  intwesting article 
by Nick Trefethen (July/August 2002, page 1) pre- 
senting the answers to a set of problems he had pro- 
posed previously (January/February 2002, page 1). 
The answers were computed digits, and the clever 
methods of compz~tation were described. 
I found i t  surprising that no proof of the correctness 
of the answers was given. Omitting such proofs i s  the 
accepted procedure i n  scientific computing. However, 
in  a contest for calculating precise digits, one might 
have hoped for more. 

Joseph B. Keller, Stanford University 

In my view Keller's request for proofs as opposed to 
compelling evidence of correctness is, in this context, 

/ somewhat unreasonable, and even in the long term counter- 
1 productive [3,4]. Nonetheless, the authors of The Challenge 

have made a complete and cogent response to Keller and 
much much more. The interest generated by the contest 
has with merit extended to The Challenge, which has al- 
ready received reviews in places such as Science, where 
mathematics is not often seen. 

Different readers, depending on temperament, tools, and 
training, will find the same problem more or less interest- 
ing and more or less challenging. The book is arranged so 
the ten problems can be read independently. In all cases 
multiple solution techniques are given; background, math- 
ematics, implementation details-variously in each of the 
3Ms or otherwise-and extensions are discussed, all in a 
highly readable and engaging way. 

Each problem has its own chapter with its own lead 
author. The four authors, Folkmar Bornemann, Dirk Lau- 
rie, Stan Wagon, and Jorg Waldvogel, come from four 
countries on three continents and did not know each 
other as they worked on the book, though Dirk did visit 
Jorge and Stan visited Folkmar as they were finishing 
their manuscript. This illustrates the growing power of 
the collaboration, networking, and the grid-both human 
and computational. 

Some high spots 

As we saw, Joseph Keller raised the question of proof. On 
careful reading of the book, one may discover proofs of 
correctness for all problems except for #1, #3, and #5. For 
problem #5, one difficulty is to develop a robust interval 
implementation for both complex number computation 
and, more importantly, for the Gamma function. While er- 
ror bounds for #I may be out of reach, an analytic solution 
to #3 seems to this reviewer tantalizingly close. 

The authors ultimately provided 10,000-digit solutions to 
nine of the problems. They say that this improved their 
knowledge on several fronts as well as being "cool." When 
using Integer Relation Methods, ultrahigh precision com- 
putations are often needed 131. One (and only one) prob- 
lem remains totally intractable"-at press time, getting 
more than 300 digits for #3 was impossible. 

Some surprises 

According to the authors,12 they were surprised by the fol- 
lowing, listed by problem: 
#l. The best algorithm for 10,000 digits was the trusty 

trapezoidal rule-a not uncommon personal experi- 
ence of mine. 

#2. Using interval arithmetic with starting intervals of size 
smaller than 10-5000, one can still find the position of 
the particle at time 2000 (not just time ten), which 
makes a fine exercise for very high-precision interval 
computation. 

#4. Interval analysis algorithms can handle similar prob- 
lems in higher dimensions. As a foretaste of future 
graphic tools, one can solve this problem using current 
adaptive 3-0 plotting routines which can catch all the 
bumps. As an optimizer by background, this was the 
first problem my group solved using a damped Newton 
method. 

#5. While almost all canned optimization algorithms failed, 
differential evolution, a relatively new type of evolu- 
tionary algorithm, worked quite well. 

#6. This problem has an almost-closed form in terms of el- 
liptic integrals and leads to a study of random walks 
on hypercubic lattices, and Watson integrals [3, 4, 51. 

#9. The maximum parameter is expressible in terms of a 
MeijerG fibnetion,. While this was not common knowl- 
edge among the contestants, Mathematica and Maple 
both will figure this out. This is another measure of the 
changing environment. It is usually a good idea-and 
not at all immoral-to data-mine13 and find out what 
your favourite one of the 3Ms knows about your cur- 
rent object of interest. For example, Maple tells one 
that: 

"If only by the authors' new gold standard of 10,000 d~gits 

"Stan Wagon, private communication. 
13By its own count. Wal-Marl has 460 terabytes of data stored on Teradata mainframes, made by NCR, at its Bentonville headquarters. To put that in perspectlve, the 
Internet has less than haif as much data . . . ," Constance Hays, "What Wal-Marl Knows About Customers' Habits," New York Times, Nov. 14, 2004. Mathematicians 
also need databases. 
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The Meijer G function is defined by the inverse 
Laplace transform 

MeijerG( [as,bs] , [cs,ds] , z )  

/ 

- . .  ?. . .  1 GAMMA(l-as+y) GAMMA(cs-y) -------------- --. --. -. -. . . . . . . .. . . . . -. --. -. . -. --. -. . - .- ... . .. . . . . . . .. . -. . -. - z dy 
Pi I GAMMA(bs-y) GAMMA(1-ds+y) 

I 
L 

where 

as= [al,. . . ,am], GAMMA(1-as+y) = GAMMA(1-al+y) . . . GAMMA(1-am+y) 
bs= [bl,. . . ,bnl , G ~ ( b s - y )  =  GAMMA(^^-y) . . GAMMA(bn-y) 
CS = [cl, . . . , cp] , GAMMA (cs-y) = GAMMA(c1-y) ' ' GAMMA(cp-y) 
ds = [dl, . . . dql , GAMMA(1-ds+y) = GAMMA(1-dl+y) . - . GAMMA(1-dq+y) 

Another excellent example of how packages are chang- 
ing mathematics is the Lambert W function [4], whose 
properties and development are very nicely described in a 
recent article by Brian Hayes [8], Why W? 

Two big surprises 
I finish this section by discussing in more detail the two 
problems whose resolution most surprised the authors. 

The essay on Problem #7, whose principal author was 
Bornemann, is titled: "Too Large to be Easy, Too Small to 

analytic solutions, the first using sepa,ration of variables 
on the underlying PDE on a general 2a X 26 rectangle. We 
learn that 

where p : = alb. A second method using conformal map- 
pings yields 

(3.5) arccot p = p(a,b) ?T + arg K(eiP(a,b)"), 
2 

Be Hard." Not so long ago a 20,000 x 20,000 matrix was large 
enough to be hard. Using both congruential and p-adic where K is the complete elliptic integral of the first kind. 

methods, Dumas, Turner, and Wan obtained a fully symbolic It will not be apparent to a reader unfamiliar with inver- 

answer, a rational with a 97,000-digit numerator and like de- sion of elliptic integrals that (3.4) and (3.5) encode the same 

nominator. Wan has reduced the time to obtain this to about solution; but they must, as the solution is unique in (0,l); 

15 minutes on one machine, from using many days on many each can now be used to solve for p = 10 to arbitrary pre- 

machines. While p-adic analysis is susceptible to parallelism, cision. 
Bornemann finally shows that, for far from simple rea- it is less easily attacked than are congruential methods; the 

need for better parallel algorithms lurks below the surface sons, the answer is 

of much modem computational mathematics. 2 
(3.6) p = - arcsin (kloo), The surprise here, though, is not that the solution is ra- T 

tional, but that it can be explicitly constructed. The chap- 
where 

ter, like the others, offers an interesting menu of numeric 
and exact solution strategies. Of course, in any numeric ap- kloo := ((3 - 2 f i )  (2 + V%) (-3 + fi) ( - ~  + 4V%)2)2 
proach ill-conditioning rears its ugly head, while sparsity 
and other core topics come into play. 

My personal favourite, for reasons that may be appar- 
ent, is: 

Problem #lo: "Hitting the Ends." Bornemann starts the 
chapter by exploring Monte-Carlo methods, which are 
shown to be impracticable. He then reformulates the prob- 
lem deteministically as the value at the center of a 10 X 

1 rectangle of an appropriate harmonic measure of the 
ends, arising from a 5-point discretization of Laplace's 
equation with Dirichlet boundary conditions. This is then 
solved by a well-chosen sparse Cholesky solver. At this 
point a reliable numerical value of 3.837587979 . 10V7 is ob- 
tained. And the posed problem is solved numerically to the 
requisite 10 places. 

But this is only the warm-up. We proceed to develop two 

a simple composition of one arcsin and a few square roots. 
No one anticipated a closed form like this. 

Let me show how to finish up. An apt equation is [5,  
(3.2.29)] showing that 

exactly when k = k+ is parametrized by theta functions in 
terms of the so-called nome, q = exp(- n-p), as Jacobi dis- 
covered. We have 

Comparing (3.7) and (3.4), we see that the solution is 



as asserted in (3.6). The explicit form now follows from Alternatively, armed only with the knowledge that the 
classical nineteenth-century theory as discussed in [I ,  5). singular values are always algebraic, we may finish with an 
In fact k210 is the singular value sent by Ramanujan to Hardy au  courant proof: numerically obtain the minimal polyno- 
in his famous letter of introduction [2, 51-if only Trefethen mial from a high-precision computation with (3.8), and re- 
had asked for a a X 1 box, or even better a fi X V% cover the surds [4]. 
one! 

Example 3. Maple allows the following 

>~igits:=100:with(Po~ynomia~Tools): 
> k: =s->evalf (~lliptic~odulus (exp(-~i*sqrt (s) ) ) ) : 

> p: =latex(MinimalPolynomial (k(100), 12) ) : 
> 'Errorr, fsolve(p) [I] -evalf (k(100) ) ; galois(p) ; 

Error, 4 10p106 
"8T9", {"D(4) [x]2", "E(8):2"), "+"  , 16, {"4 5) (6 7) " ,  " (4 8) (1 5) (2 6) (3 7) " ,  

"(1 8) (2 3) (4 5) (6 7)", "(2 8) (1 3) (4 6) (5 7)") 

which finds the minimal polynomial for kloo, checks it to 
100 places, tells us the galois group, and returns a latex ex- 
pression 'p' which sets as: 

p(-X) = 1 - 1658904 -X - 3317540 -X2 + 1657944 -X3 
+ 6637254 X 4  + 1657944 -X5 
- 3317540 -X6 - 1658904 -X7 + -X8, 

and is self-reciprocal: it satisfies p(x) = 9p(llx).  This sug- 
gests taking a square root, and we discover that y = a 
satisfies 

1 - 1288y + 20y2 - 1288y3 - 26y4 + 1288y5 
+ 20yG + 1288y7 + y8. 

Now life is good. The prime factors of 100 are 2 and 5, 
prompting 

subs (-X= z , 
[o~(((factor(p,{ssrt(2),sqrt(5)}))))1)) 

This yields four quadratic terms, the desired one being 

q = z2 + 322 z - 228 z f i  + 144 2 . 6  - 102 z f i 6  
+ 323 - 228 fi + 1 4 4 6  - 1 0 2 f i a .  

For security, 

w: =solve(q) [2] : evalf [1000] (k(100) -wA2) ; 

gives a 1000-digit error check of 2.20226255 . lopgg8. 
We leave it to the reader to find, using one of the 3Ms, 

the more beautiful form of kloo given above in (3.6). O 

than 'j?ormulas," but my view is essentially the same. 
(Harold M. Edwards [6, p. 11) 

Edwards comments elsewhere in his recent Essays on 
Constructive Mathematics that his own preference for con- 
structivism was forged by experience of computing in the 
fifties, when computing power was, as he notes, "trivial by 
today's standards." My own similar attitudes were ce- 
mented primarily by the ability in the early days of personal 
computers to decode-with the help of APL-exactly the 
sort of work by Ramanujan which finished #lo. 

The SIAM 100-Digit Challenge: A Study In High-uccu- 
racy Numerical Computing is a wonderful and well-writ- 
ten book full of living mathematics by lively mathemati- 
cians. It shows how far we have come computationally and 
hints tantalizingly at what lies ahead. Anyone who has been 
interested enough to finish this review, and had not yet read 
the book, is strongly urged to buy and plunge in-computer 
in hand-to this fine advertisement for constructive math- 
ematics 2lst-century style. I would equally strongly suggest 
a cross-word solving style-pick a few problems from the 
list given, and try them before peeking at the answers and 
extensions given in The Challenge. Later, use it to illustrate 
a course or just for a refresher; and be pleasantly reminded 
that challenging problems rarely have only one path to so- 
lution and usually reward study. 
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REVIEWED BY JEAN PETITOT 

hat exactly is the type of reality of mathematical 

1 
ideal entities? This problem remains largely an open 

question. Any ontology of abstract entities will encounter 
certain antinomies which have been well known for cen- 
turies if not millennia. These antinomies have led the var- 
ious schools of contemporary epistemology increasingly to 
deny any reality to mathematical ideal objects, structures, 
constructions, proofs, and to justify this denial philosoph- 
ically, thus rejecting the spontaneous naive Platonism of 
most professional mathematicians. But they throw out the 
baby with the bath water. Contrary to such figures as Poin- 
car4 Husserl, Weyl, Borel, Lebesgue, Veronese, Enriques, 
Cavailles, Lautman, Gonseth, or the late Godel, the domi- 
nant epistemology of mathematics is no longer an episte- 
mology of mathematical content. For quite serious and pre- 
cise philosophical reasons, it refuses to  take into account 
what the great majority of creative brilliant mathematicians 
consider to be the true nature of mathematical knowledge. 
And yet, to quote the subtitle of Hao Wang's (1985) book 

I 
Beyond Analytic Philosophy, one might well ask whether 

I the imperative of any valid epistemology should not be "do- 
ing justice to what we know." 

The remarkable debate Conversations on Mind, Mat- 

i ter, and Mathematics between Alain Connes and Jean- 
Pierre Changeux, both scientific minds of the very first rank 
and professors at the College de France in Paris, takes up 
the old question of the reality of mathematical idealities in 
a rather new and refreshing perspective. To be sure, since 
it is designed to be accessible to a wide audience, the de- 
bate is not framed in technical terms; the arguments often 

employ a broad brush and are not always sufficiently de- 
veloped. Nevertheless, thanks to the exceptional standing 
of the protagonists, the debate manages to be compelling 
and relevant. 

Jean-Pierre Changeux's Neural Materialism 
Let me begin by summarizing some of Jean-Pierre 
Changeux's arguments. 

Because mathematics is a human and cognitive activity, 
it is natural first to analyze it in psychological and neuro- 
cognitive terms. Psychologism, which formalists and logi- 
cists have decried since the time of Frege and Husserl, de- 
velops the reductionist thesis that mathematical objects 
and the logical idealities that formulate them can be re- 
duced-as far as their reality is concerned-to mental 
states and processes. Depending on whether or not mental 
representations are themselves conceived as reducible to 
the underlying neural activity, this psychologism is either 
a materialist reductionism or a mentalist functionalism. 

J-P. Changeux defends a variant of materialist reduc- 
tionism. His aim is twofold: first, to inquire into the nature 
of mathematics, but also, at a more strategic level, to put 
mathematics in its place, so to speak. He has never con- 
cealed his opposition to Cartesian or Leibnizian ratio- 
nalism~ that have made mathematics the "queen" of the sci- 
ences. In his view, mathematics must abdicate its overly 
arrogant sovereignty, stop laying claim to universal valid- 
ity and absolute truth, and accept the humbler role assigned 
to it by Bacon and Diderot-that of "servant" to the natural 
sciences (p. 7). And what better way to make mathematics 
surrender its prestigious seniority than to demonstrate sci- 
entifically that its claims to absolute truth have no more ra- 
tional basis than do those of religious faith? 

Pursuing his mission with great conviction, Changeux 
revisits all the traditional touchstones of the empiricist, ma- 
terialist, and nominalist critiques of Platonist idealism in 
mathematics. He cites an impressive mass of scientific data 
along the way, including results from neurobiology and cog- 
nitive psychology in which he has played a leading role. It 
is this aspect of his approach which commands attention. 

1. The empiricist and constructivist theses hold that 
mathematical objects are "creatures of reason" whose re- 
ality is purely cerebral (p. 11). They are representations, 
that is, mental objects that exist materially in the brain, 
and "corresponding to physical [i.e., neural] states" (p. 14). 

Mental representations-memory objects-are coded in 
the brain as forms in the Gestalt sense, and stored in the 
neurons and synapses, despite significant variability in 
synaptic efficacy (p. 128). 

Their object-contents are reflexively analyzable and their 
properties can be clarified axiomatically. But that is possible 
only because, as mental representations, they are endowed 
with amaterial reality (pp. 11-15). What's more, the axiomatic 
method of analysis is itself a "cerebral process" (p. 30). 

2. One might try to salvage an autonomy for the formal 
logical and mathematical levels by admitting, in line with 
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