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Abstract

The computation of global invariant manifolds has seenrenewed interest in recert
years. We survey di erent approacesfor computing a global stable or unstable mani-
fold of a vector eld, wherewe concerrate on the caseof a two-dimensionalmanifold.
All methods are illustrated with the sameexample| the two-dimensionalstable man-
ifold of the origin in the Lorenz system.



1 Intro duction

Many applications give rise to mathematical models in the form of a system of ordinary
di erential equations. Well-known examplesare periodically forced oscillators and the
Lorenz system (introducedin Sec.1.1); see,for example, [Guckenheimer& Holmes,1986
Kuznetsov, 1998 Strogatz, 1994 for further references. Sud a dynamical system can be
written in the generalform

* =t ), 1)

dt
wherex 2 R" andthe mapf : R" 7! R" is su cien tly smooth. We remark that, in general,
the function f will depend on parameters. Howewer, we assumethat all parametersare xed
and use (1) asthe appropriate setting for the discussionof global manifolds.

The goalis to understandthe overall dynamicsof system(1). To this end, one needsto
nd specialinvariant sets,namelythe equilibria, periodic orbits, and possiblyinvariant tori.
Furthermore, if theseinvariant setsare of saddletype then they comewith global stable and
unstable manifolds. For example,the stable and unstable manifolds W*(xo) and W"(x) of
a saddleequilibrium xo are de ned as

WS(Xg) = fx2R"]j Jim Y(X) = XoQ
WY(xq) = fx2R"]j Jim Y(X) = XoQ;

respectively, where 'isthe ow of (1). Hence trajectorieson the stable (unstable) manifold
convergeto X in forward (badkward) time. Knowing these manifolds is crucial as they
organizethe dynamicson a global scale. For example,stable manifolds may form boundaries
of basinsof attraction, andit is well known that intersectionsof stableand unstablemanifolds
lead to complicated dynamicsand chaos.

Generally global stable and unstable manifolds cannot be found analytically. Further-
more, they are not implicitly de ned, meaningthat it is not possibleto nd them asthe
zero-setof somefunction of the phasespacevariables. Hence, points on global invariant
manifolds cannot be found “locally’. Instead, these manifolds must be "grovn' from local
knowledge,for examplefrom linear information neara xed point Xo.

It is the purposeof this paper to reviewdi erent numericaltechniquesthat have recerly
becomeavailable to compute these global objects. We review v e algorithms in detail and
characterizetheir propertiesusinga commontest-caseexample,namely, the Lorenzmanifold
which is introduced now.

1.1 The Lorenz manifold

The Lorenz system[Lorenz, 1963]is a classicexampleof a vector eld with a chaotic attrac-
tor. It is givenas
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Figure 1. The unstable manifold W"(0) (red curve) accunulates on the butter y-shap ed
Lorenz attractor. The blue disk is the linear approximation E*(0) of the Lorenz manifold
W3(0). Also shavn are the two equilibria at the certres of the “wings' of the buttery and
their one-dimensionaktable manifolds (blue curves).

wherewe x the parametersat the standard choice = 10,%= 28and = 8=3, for which
one nds the famousbutter y-shap ed Lorenz attractor. Note that the Lorenz system (2)
hasthe symmetry (x;y;z) 7! ( x; V,;z) of rotation by around the z-axis. In particular,

the z-axis is invariant under the ow. p

The origin is asaddlepoint of (2) with realeigervalues and *Tl % ( +21)2+4 (
that is, approximately 22828, 2:667 and 11:828. The origin is cortained in the Lorenz
attractor, so that its one-dimensionalunstable manifolds W"(0) can be usedto approxi-
mate the Lorenz attractor; this is illustrated in Fig. 1 where W"(0) is shovn in red. At
the certers of the "wings' of the buttery are two more equilibria of (2), appraximately at
( 8485 8:485 27),which areead other'simageunderthe symmetry of (2). Each of these
equilibria has one negative real eigervalue, giving rise to a one-dimensionaktable manifold,
and an unstable pair of complex conjugate eigervalues with positive real part. Figure 1
shows all equilibria of (2) in green,togetherwith their one-dimensionaplobal manifolds. As
mertioned, the red curve is the unstable manifold WY (0) of the origin, whoseclosureis the
Lorenz attractor. The blue curvesare the stable manifolds of the two other equilibria. The
blue disk liesin the linear eigenspacd=*(0) of the origin.

The Lorenz attractor, that is, the red curve in Fig. 1 corveysthe chaotic nature of the
system,but doesnot give any information on the overall organization of the phasespaceof
(2). This role is played by the two-dimensionalstable manifold W *(0) of the origin | which
we referto asthe Lorenz manifold from now on. The Lorenz manifold W*(0) is tangert at O
to the eigenspacd *(0) spannedby the eigervectorsassaiated with the eigervalues 22828
and 2:667. This is a genericproperty of stable and unstable manifolds; seeSec.1.2. Note
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the large di erence in magnitude betweenthe two stable eigervalues,leadingto a dominance
of the strong stable manifold, which is tangent to the eigenspaceof the the eigervalue
22:828.

The Lorenzmanifold hasa number of astonishingproperties. Imaginethat the little blue
disk in Fig. 1 "grows' to becomethe Lorenz manifold W*(0), but without ewer intersecting
the red unstable manifold WY(0). In other words, the Lorenz manifold stays "in between’
trajectories on the Lorenz attractor, but “spirals' simultaneously into both wings of the
buttery . Now imagine how trajectories on this manifold must be able to passfrom one
wing to the other. Any nitely grown part of W*(0) is topologically still a two-dimensional
disk, but onewith a particularily intriguing embeddinginto R3. The geometryof W$(0) can
only truly be appreciatedif one candraw an image of it.

Someearly (non-numerical) work on the geometryof the Lorenzmanifold canbe foundin
[Perell, 1979. Pioneeringe orts to visualizethe Lorenz systemare due to Stewart. Trajec-
toriesthat illustrate the (local) stable manifold canbefound in [Thompson& Stewart, 1986
Fig. 11.6],while [Stewart, 1984 is an extendedabstract of a movie that visualizesthe dynam-
ics and global bifurcations (as a function of R) of the Lorenz systemwith computer graphics
in the three-dimensionalphasespace. The rst, hand-dravn image of (the structure of)
the Lorenz manifold appearedin the book [Abraham & Shaw, 1985]. The rst published
computer-generatedmageis that in [Gudkenheimer& Worfolk, 1993. Not in the leastdue
to its intriguing nature, the Lorenz manifold has becomea much-usedtest-caseexamplefor
ewvaluating algorithms that compute two-dimensional(un)stable manifolds of vector elds.
For ead of the methods discussedn this paper we presen animageof the computedLorenz
manifold that is always takenfrom a viewpoint alongthe line spannedby the vector (' 3; 1; 0)
in the (Xx;y)-plane.

1.2 Stable and unstable manifolds

In order to explain the di erent methods for computing two-dimensional(un)stable mani-
folds, we needto introduce somenotation. To keepthe exposition simple, we considerhere
the caseof a global (un)stable manifold of a hyperbolic saddlepoint xo 2 R" of (1). Further-
more, we preset all theory and the di erent methods for the caseof an unstable manifold.
This is not a restriction, becausea stable manifold can be computedasan unstable manifold
whentime is reversedin system(1).

Suppose now that f(xg) = 0 and for somel < k < n the Jacobian Df (xo) of f
at Xo has k eigervalues with positive real parts and (n k) eigervalues with negative
real parts (counted with multiplicit y). The Stable and Unstable Manifold Theorem (see,
e.g., [Guckenheimer& Holmes, 1986, Kuznetsor, 1999) statesthat a local unstable mani-
fold Wg.(Xo) existsin a neighborhood of x,. Furthermore, W,3.(Xo) is assmooth asf and
tangert to the unstable (generalized)eigenspacde “(xg) of Df (Xg) at Xo. This meansthat
we may de ne the global unstable manifold W"(x,) as

Wi(x)) = fx2R"j fim 00 = x0= L W) 3)

>0

Hence, WY(X,) is a k-dimensional (immersed) manifold, de ned as the globalization of
Wi (xo) under the ow '. Note that the local stable manifold W3.(xo) and the stable
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manifold W3(x) are similarly related with respect to the reverseddirection of time, namely

W3(xo) = fx2R"j lim (x) = xog= | {(Wige(Xo)) : (4)
<0
This indeed shaws that it is sucient to consideronly the caseof an unstable manifold,
possibly after reversingtime.

De nition (3) already suggestsa method for computing W"(xo): take a small (k  1)-
sphere(or other "out ow boundary' sud asan ellipsoid) S~ W3.(Xo) with radius around
Xo and “gron' the manifold WY(x,) by ewlving S underthe ow !. As starting data, one
cantakeS  EY(Xg) or a higher-orderapproximation of Wy (Xo).

In the special casek = 1 of computing a one-dimensionalmanifold, this method works
well, becauset boils down to ewlving two points at distance from x, underthe ow. This
can be donereliably by numericalintegration of (1), sothat computing one-dimensionaln-
stable manifoldsis straightforward. The one-dimensionamanifoldsin Fig. 1 were computed
in this way.

Howevwer, the above method of ewlving a (k  1)-sphereS with k 2 underthe ow

t generallygivesvery poor results. This is sobecauseS will typically deform very rapidly
under t. In particular, it will stretch out alongthe strong unstable directions (if presen).
Furthermore, S is a cortinuous object that will have to be discretized by some mesh.
Any meshon S will deteriorate rapidly under the ow !, sothat it will not be a good
represetation of WY(Xxo) asa k-dimensionalmanifold.

1.3 Dieren t approac hes to computing W"(xg)

It is quite a challengeto compute a global unstable manifold W"(x,) of dimensionat least
two. Indeed simple numerical integration of the ow is not su cient (exceptin very special
cases)| dedicated algorithms are neededfor this task. Before we describe somerecen
methods in more detail, we rst explain the underlying approadesin generalterms. It is
usefulto considerfor this purposedi erent parametrizationsof W"(xy).

We conceltrate in this survey on the rst nontrivial casek = 2 of a two-dimensionalun-
stablemanifold. While all methods could be usedin principle to computehigher-dimensional
manifolds, almost all implemertations are for k = 2. Furthermore, visualizing higher-
dimensional manifolds remains a serious challenge. The di erent methods use the idea
of growing WY (x,) from a local neighborhood of xo. They di er in how they ensurethat a
good meshrepreseting W"(Xo) is computedduring this growth process.

Consideras starting data a small smooth closedcurve S W (Xo), alsoreferredto as
a (topological) circle in what follows, of points that all lie within a distance from xg. (As
was mertioned, onecantake S  EY(Xp) if is small enough.) The goalisto nd a "nice'
parametrization of W"(x,) in terms of the starting data S .

As we have seenabove, the parametrization

W(xo) = f '(S)0r )

is not practical. While the '(S) are smooth closedcurvesfor all t, they are typically not
‘nice'and ‘round'. Indeedthe curvature alongthesecurvestypically variesdramatically, and
they soon tend to look like very elongatedellipses.
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Figure 2: The Lorenz manifold computed with the method of
[Gudkenheimer& Worfolk, 1993 up to gedalesic distance 180; the computed approxi-
mate gealesiclevel setsare at increasingradial distancesfrom the origin with stepsof 5.0
in between,which is indicated by a color changefrom magena (small) to blue (large).

In order to de ne the parametrization of W"Y(xo) as a family of the nicest topological
circles possible,recall that the gealesicdistancedy(x;y) is de ned asthe arclength of the
shortest path in WY(x,) connectingx andy, called a geodesic Considernow the gealesic
parametrization of W"(Xxo) given by

WY(xo) = fS g0 where S :=1fx 2 W"(Xq)jdy(X;X0) = @ (6)

The gealesicparametrization (6) is ertirely in terms of the geometryof WY(X,), and not in
terms of the dynamicson the manifold. SinceW"(x,) is a smaoth manifold tangert to EY(X)
at Xo, there must be some o« > 0 sothat the gealesiclevel setsS for 0 < max are all
smaoth closedcurveswithout self-irtersection, that is, topological circles; see,for example,
[Spivak, 1979. We alsorefer to gealesiclevel setsfor max asgeodesiccircles Up until

max, the gealesicparametrization (6) is geometrically the nicest parametrization, because
its elemelts, the gealesiccircles,are the nicestpossibletopologicalcircleson WY(xg). (This
meanshere exactly that the metric is the idertity.) For the Lorenz manifold, apparerily

max = 1 . Howewer, the caseof a nite ax IS possibleand it typically involves a non-
smooth gealesiccircle; see[Krauskopf & Osinga, 2003 for details.

The idea of computing WY(xo) as a sequenceof gedaesic circles goes badk to
[Gudkenheimer& Worfolk, 1993. Starting with a small gealesiccircle (or ellipse)S around
Xo, they modify the vector eld so that the componert tangertial to the last computed
gedalesiclevel setis practically zero, retaining only the radial part. Then the ow of the
rescaledradial vector eld is usedto ewlve (a su cient number of points on) this gealesic
circle by integration over a suitably small and xed integration time (now correspnding to
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gedalesicdistance up to a rescalingof the radial part of the vector eld). Figure 2 shavs
36 approximate gealesiccircles of the Lorenz manifold computed with this method up to

gedalesicdistance 180. The output was producedin the DsTool [Bad et al., 1993 software
ervironmert; the manifold could be renderedasa two-dimensionalsurfaceby post-processing
the data. When the vector eld f is largely tangertial to the gealesiccircles,the computa-
tion of that vector eld's radial componert becomeaunstableunlessthe integration time is

su cien tly small (seethe ripples on the last few gealesiccirclesnearthe helix at the middle
top of Fig. 2). This CFL-type stability condition becomesincreasingly restrictive as the

angle betweenthe trajectories and gealesiccircles decreases.More generally the method

from [Guckenheimer& Worfolk, 1993 can approximate stably only a part of the manifold,

on which the vector eld remainstransverseto ead gealesiccircle.

The method by [Krauskopf & Osinga, 1999 Krauskopf & Osinga, 2003, discussedn de-
tail in Sec.2, alsocomputesW!(xp) asa sequenceof gealesiccircles, but doesnot rescale
the vector eld. Instead, the ideais to nd the next geadesiccircle in a local (and chang-
ing) coordinate system given by hyperplanesperpendicular to the presen gealesiccircle.
Determined by certain accuracyparameters,a suitable number of meshpoints on the next
gedlesic circle is computed by solving appropriate boundary value problems. During the
computation the interpolation error stays bounded, sothat the overall quality of the mesh
is guararteed.

A dierent approad is to reparametrizetime sothat the ow with respect to the new
time progresseswvith the samespeed along all trajectories through S, meaning that the
samearclength is covered per unit time along all trajectories. One also speaksof arclength
integration. We then have the new parametrization of W"(x) given by

WY(xo) = fA gso with A = fx2 WYX jda(X;X0) = g; (7)

whered,(x;y) denotesthe arclength distancebetweentwo points x andy on the sametra-
jectory; wesetd,(x;y) = 1 if x andy arenot onthe sametrajectory. This parametrization
canbe consideredasthe bestin terms of dynamically de ned topological circleson WY(Xo).

[Johnsonet al., 1997 use essenhally this parametrization by trajectory arclength, but
considerintegration in the product of time and phasespace. They start with a uniform
meshon a rst small circle A 2 EY(Xo) and then integrate at ead step the presen mesh
points up to a speci ed arclength. This leadsto a new circle, on which a uniform meshis
then constructedby interpolation betweenthe integration points. Figure 3 shovsthe Lorenz
manifold computed with this method up to an appraximate arclength distance of 200. The
method is quite fast sinceit involvesonly direct integration and redistribution of points by
interpolation. On the other hand, it is dicult to cortrol the interpolation error, which is
determinedby the (unknown) dynamicson W"Y(Xy).

An altogetherdi erent parametrization of W"(x,) is the dual parametrization to (5) and
(7) that consistsof the individual trajectoriesthrough a xed S EY(xg). It is formally
given as

WY(xo) = fBpOp2s Where By :=f ‘(p)jt2 Rg: (8)

Notice that, in the caseof a two-dimensionalmanifold W"(xo) considerechere,parametriza-
tion (8) is a one-parameteifamily of trajectories,while (5) and (7) are one-parameterfamilies
of closedcurves.



Figure 3: The Lorenz manifold computedwith the method of [Johnsonet al., 1997 up to a
total trajectory arclength of about 200.

The method by Doedel,discussedn detail in Sec.3, computestwo-dimensional(un)stable
manifolds by following trajectories B, as a boundary value problem where the initial con-
dition p 2 S is parametrizedwith one of the free cortinuation parameters. This method
is very accurateand exible by allowing for di erent boundary conditions at the other end
point of the trajectory B,, which includesspecifying a xed arclength L of the trajectory.
During a computation, mesh points are distributed along the trajectoriesto maintain the
accuracyof the computation.

The method of [Henderson,2003, discussedn detail in Sec.4, alsoconsidergparametriza-
tion (8) of WY(xo) by orbits. Howewer, the manifold is constructed directly as a two-
dimensionalobject by computing fat trajectories. A fat trajectory is a string of polyhedral



patchesalong a trajectory, wherethe sizeof eat patch is given by local curvature informa-
tion. When a fat trajectory readesthe prescribed total arclength L, the boundary of the
computedpart of the manifold is determined. Then a suitable starting point for the next fat
trajectory is found and the computation cortinues. When no more possiblestarting points
exist, the computation stops.

The method of [Gudkenheimer& Vladimirsky, 2004, discussedn detail in Sec.5, locally
models W"(xo) asthe graph of a function g that satis es a quasi-linear partial di erential
equation (PDE) expressingthe tangency of the vector eld f to the graph of g. The PDE
is discretizedin an Eulerian framework and the manifold is appraximated by a triangulated
mesh. At eat step one new point is addedto the mesh,leadingto a new simplex whose
other vertices are previously known meshpoints. An Ordered Upwind Method determines
where the next point/simplex is added and the ordering of new simplicesis basedon the
arclength of the trajectories.

The method by [Dellnitz & Hohmann, 1996 Dellnitz & Hohmann, 1997, discussedin
detail in Sec.6, is complememary to the previous methods in that it computesan outer
appraximation of the manifold by boxesof the samedimensionn asthe phasespaceof (1).
This method usesthe time- map of the ow ! for some xed . A subdivision algorithm
rst nds a covering of Wg.(Xo) with n-dimensionalboxes of suitably small diameter. This
local box covering is then globalizedin stepsby adding new boxes (of the samesmall size)
that are "hit' underthe time- map by the presen collectionof boxes. The practical problem
is to reliably detectwhenthe imageof onebox intersectsanother box (for example,by using
test points). If a-priori boundson the local growth rate of the vector eld are known then
it is possibleto compute a rigorous box covering of WY(xq); see[Junge, 20004.

In the following sectionswe presen the di erent algorithms in more detail, again illus-
trated with the computation of the Lorenz manifold W *(0).

2 Appro ximation by geodesic level sets

The method of [Krauskopf & Osinga, 1999 Krauskopf & Osinga, 2003 approximatesa global
(un)stable manifold asa sequencef gealesiccirclesof the parametrization (6). Only the case
of a two-dimensionalunstable manifold of a saddlepoint in a three-dimensionalspaceis pre-
seried here. Howeer, the method can be formulated in terms of computing a k-dimensional
manifold of a vector eld in R", and has beenimplemented to compute two-dimensional
(un)stable manifolds of saddle points and saddle periodic orbits in a phase spaceof any
dimension;seethe examplesin [Krauskopf & Osinga, 1999 Krauskopf & Osinga,2003 and
alsoin [Osinga,200Q Osinga,2003. Variants of this method exist to compute global mani-
folds of maps; see[Krauskopf & Osinga, 1998a Krauskopf & Osinga, 1998b].

The method completely stepsaway from ewlving an existing mesh. Instead, new mesh
points are computedby meansof solving appropriate boundary value problems;seeSec.2.1.
The boundary conditions predetermine where the new mesh points needto be added in
order to adhieve a prescribed meshquality. This method is asindependen of the dynamics
aspossibleand it grows the manifold as a sequencef discretizedgealesiccirclesuntil 1«
is reahed wherethe gealesiclevel setsare no longer smooth circles;seeSec.1.3.



Figure 4: The boundary value problemformulated for a meshpoint r on the geaesiclevel set

C;i is solved by a family of trajectories, starting at g (t) on C; and endingat b (t) in F,, that

is parametrizedby integration time t. Thereisaunique rst orbit sudthat jb(t;) rj= ;.

The image shaws actual data for the Lorenz manifold W*(0) of Fig. 5 whereC; S . with
i = 3275and ; = 4.0.

To be more speci ¢, let M; denotea circular list of meshpoints from which a cortinuous
topologicalcircle C; is formed by connectingneighboring points of M; by line segmets. The
meshpoints in M; are computedto ensurethat C; is a good approximation (according to
prespeci ed accurgy parameters)of an appropriate gealesiccircle S ;. The manifold W*(0)
is then approximated up to a prescribed gealesicdistancel by the triangulation formed by
the total meshM = [ o ;i |M;, wherel 2 N dependson L and the accuracyparameters.

The start data is a uniform meshM, on aninitial smallgealesiccircleS , = S EY(Xo)
at someprescribeddistance from 0. The method then computesat ead stepi anewcircular
list Mi,; that approximates the next level setS ., . In other words, at ewery step a new
bandis addedto W"(x,); the width of this band is determinedby the curvature of gealesics.
The method stopswhenthe prespeci ed xed gedalesicdistancel from O is readed.

2.1 Finding a new point in Mj41

Let us considerthe task of nding M;,; at someprescribed incremert ; from a known
circular list M; represeting S ,. The circular list M., is constructedpointwise. Let r 2 M;
and considerthe (half)plane F, through r that is (approximately) perpendicularto C; at r.
(In the implemertation the normal to F, is de ned asthe averageof the two unit vectors
through r and its immediate left and right neighbors.) Then WY(xo) \ F, is a well-de ned
one-dimensionalcurve locally near r, which is parametrized by the time it takesto read
WY(xo) \ F, by integration from C;. Points in W!Y(xo) \ F, can be found by solving the
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two-point boundary value problem

) 2 G (9)
b(t) = “(c(t) 2 Fy; (10)

where the integration time t is a free parameter. The situation is shavn in Fig. 4 with
actual data for the Lorenz manifold W*(0) presented in Sec.2.3. Note that for an unstable
manifoldt 0 and for a stable manifoldt 0.

The point b (t;) 2 F, isuniquely de ned by the property that t, isthe smallestintegration
time (in absolutevalue) for which jb (t,) rj= . If ; issmallenoughthen b (t,;) exists
and can be found by cortinuation of the trivial solution b (0) = g (0) = r for t = 0 while
cheking for the rst zeroof the test function

i i) rj: (11)

When the rst zerois found then by (t;) = Rk (t) is the candidate for a point in Mj,;; see
Fig. 4.

2.2 Mesh adaptation

Onceall candidate points in Mj,; have beenfound, all for the same ;, then it is decided
whether the step size ; was appropriate. To this end, it is chedked that the curvature
of (approximate) gealesicsthrough all points r 2 M; was not too large. This is done
with a criterion that was originally intro ducedfor one-dimensionablobal manifolds of maps
[Hobson,1993. Let , denotethe angle betweenthe line through r and b (t;) and the line
through p; and r, wherep, 2 M; ; is the asseiated point of M; ; on the approximate
gedalesic. The step of gealesicdistance ; wasacceptableif both

r < max, and (12)
i ro < ( )max (13)

hold for all r 2 M;. In this caseM., is acceptedand stepi is complete. If there is some
r 2 M; that fails either (12) or (13) then ; is halved and step i is repeated with this
smaller ;. Similarly, ; may be doubledif for everyr 2 M; both , and ; , arewell
below the respective upper boundsin (12) or (13), sa, belov i, and( )min respectively.
The parameters min, max, ( )min, @nd( )max implicitly determinethe meshadaptation
along gealesicsand are xed by the userbeforea computation.

It is important to ensurethat Ci.; is also a good appraximation of S ., . In other
words, neighboring points of Mi;; may not be too closeor too far from ead other. When
two neighboring points of M; lead to two neighboring points of M;,; at more than the
prespeci ed distance ¢ from ead other, then a new point is addedin between. This is
not done by interpolating between points of M., but by applying step i of Sec.2.2 for
nding a new point in M;,; to the middle point on C;. In other words, no interpolation is
ewver performed between points that are more than distance ¢ apart. In order to ensure
proper order relations betweendirectly neighboring points of M., a point is removed if two
neighboring points in M., lie closertogetherthan a prespeci ed distance .
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Figure 5: The Lorenz manifold computed with the method of Krauskopf & Osingaup to
gedlesicdistance 154.75. Panel (a) shows the ertire manifold, panel (b) an enlargemen
wherethe manifold is transparert, panel(c) a further enlargemen nearthe Lorenz attractor
(in mageria) where only ewery secondband is shovn, and panel (d) the computed mesh
whenlooking into the outer scroll.

The meshadaptation as decribed ensuresthat the overall error of a computation up to
a prescribed gealesicdistance L is bounded. This meansthat the computed piece of the
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manifold liesin an "-neighborhood of W"(X,), provided the accuray parametersare chosen
small enough;see[Krauskopf & Osinga, 2003 for the proof.

2.3 The Lorenz manifold approximated by geodesic circles

Figure 5 shows the Lorenz manifold W*(0) represeted by a total of 75 bands and with
total gealesicdistance 154.75. The manifold was computed starting with a meshM, of
20 points on S ES(0) with = 1:0. The computation was initiated with ; = 0:25
and the mesh was generated using the accuracy parameters i, = 0.3, nax = 04,
( dmin = 01, ( Jmax = 1.0, ¢ = 20, and ¢ = 0:67. The coloring illustrates the
gedesic distance from the origin, where blue is small, greenis intermediate and red is
large. The manifold was renderedas a two-dimensionalsurfacewith the visualization padk-
ageGeonview [Phillips et al., 1993; other illustrations of the Lorenz manifold can be found
in [Krauskopf & Osinga,2003 Krauskopf & Osinga,2004 Osinga& Krauskopf, 2003 and
animations with [Krauskopf & Osinga, 2003 Krauskopf & Osinga,2004.

Figure 5(a) shaws the ertire computed part of the Lorenz manifold from the common
viewpoint; notice the similarity with the geaesiclevel setsin Fig. 2. Figure 5(b) shows
an enlargemen of the Lorenz manifold wherethe manifold is now transparert. This brings
out the detail of the manifold, in particular, the dewelopmen of a pair of extra helices
that follow the main helix along the z-axis. Notice that points of the samecolor are on
the samegedalesiccircle, which shows that points on W*(0) that are closeto the origin in
Euclideandistance neednot be closeto the origin in gealesicdistance. Figure 5(c) shows a
further enlargemenh near the Lorenz attractor, which is illustrated in magena by plotting
the unstable manifold WY(0). In this image only ewery secondband is shavn to obtain a
see-throughe ect, shaving clearly how the Lorenz manifold ‘rolls' into the Lorenz attractor.

Figure 5(d) givesan impressionof the computed meshwith an enlargemen looking into
one of the outer scrolls. Geadesiccircles can be seenas spiraling curves (betweenbands of
the samecolor). The appraximate gealesicsare the curvesthat point appraximately radially
out in the image. They are perpendicular to the geaesiccircles,and locationswherepoints
wereaddedcanbeidenti ed asstarting points of newapproximate gealesics.Notice that the
last six bandsare closertogether. The imageillustrates how the distance betweengealesic
circlesis determined by the curvature along gealesics,while the meshdistribution on the
gedlesiccirclesis allowed to vary between ¢ = 0:67and ¢ = 2.0.

3 BVP contin uation of tra jectories

It seemsvery natural to use parametrization (8) for de ning a one-parameterfamily that
describesthe unstable manifold WY (x) of a saddleequilibrium xq of (1). An approximation
to WY(xo) couldthen be attempted by simpleintegration of Eq. (1) for a su cien t number of
initial conditionsthat lie onthe circle (or ellipse)S of smallradius in the stableeigenspace
EY(xo) certered at xo. Howewer, as was already explainedin Sec.1.3, this proceduredoes
not generally produce W"(Xo) as a surface. The main task is to properly spacethe initial
conditionsaroundthe circle, sothat the result givesa reasonablealistribution of the computed
trajectoriesalongthe stable manifold. This is a major problem becausehe ertire calculated
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trajectory (e.g.,of a xed nite length) dependendsvery sensitively on the initial condition.

The method of Doedelusesnumerical cortinuation to solve this problem. The basicidea
of cortinuation is to follow a (one-dimensional)branch of solutionsthat existsaccordingto
the Implicit Function Theoremaround a regular root of a systemof m equationswith m+ 1
unknowns. The stepsizein the cortinuation procedure(seeSec.3.1for details) measureghe
changeof the entire computel trajectory (and various parameters),and not just the change
in the initial condition. It is this key property of cortinuation that generally resultsin a
reasonabledistribution of trajectoriesalong the stable manifold.

In this sectionwe only considerthe computation of one-parameterfamilies of trajecto-
ries, which together descrike a two-dimensional(un)stable manifold of a xed point. Most
existing cortinuation algorithms can handle the computation of sud one-dimensionafami-
lies (also called solution brancheg; see for example,[Beyn et al., 2002,Doedelet al., 1991a
Doedelet al., 19910 Keller, 1977 Rheinboldt, 1986 Seydel,1999, and [Kuznetsos, 1998
Chapter 10]. The cortinuation method descrited here was implemerted in the cortinu-
ation padkage AUTO [Doedel,1981 Doedelet al., 1997 Doedelet al., 200Q by specifying
the respective driver les.

Cortinuation algorithms have alsobeendeelopedfor the higher-dimensionakase;see for
example,[Allgower & Georg, 1996 Henderson,2003. Hence,this method could be applied,
in principle, equally well to compute manifolds of dimensionlarger than two.

3.1 Pseudo-arclength contin uation

Let us begin with a discussionof somebasic notions of cortinuation. Considerthe nite-
dimensionalequation

F(X)=0; F:R™ 1 RM™ (14)

whereF is assumedto be su ciently smaoth. This equation has one more variable than it
has equations. Given a solution X, one has, generically a locally unique solution branch
that passesthrough X,. To compute a next point, say, X1, on this branch, one can use
Newton's method to solwe the extendedsystem

F(X1) = 6 (15)
(X1 Xp) X9 = s (16)

Here X4 is the unit tangert to the path of solutionsat X, the synbol denotestranspose,
and s is a step sizein the cortinuation procedure. The vector X4 is a null vector of
the m (m + 1)-dimensional Jacobian matrix Fx (Xg), and it can be computed at little
cost[Doedelet al., 19914. This cortinuation method is known as Keller's pseudo-aclength
methal [Keller, 1977. The sizeof the pseudo-arclengthstep s is normally adapted along
the brandh, depending, for example,on the corvergencehistory of Newton's method. It is
very important to note that the stepsizeis measuredwith respect to all componerts of the
solution, and not just one.

The cortinuation procedureis well posednear a regular solution X, that is, if the null
spaceof Fyx (X ) is one-dimensional.Namely, in this casethe Jacobianof the ertire system
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(15){(16) at Xy, that is,the (m+ 1) (m+ 1) matrix

Fx (Xo)
X9

isnonsingular. The Implicit Function Theoremthen guararteesthat alocally unique solution
branch passeghrough Xo. This brandh can be parametrizedlocally by s. Moreover, for
s su cien tly small, and for su cien tly accurateinitial appraximation (for example,when

taking X}o) = Xp+ SXyg), Newton's method for solving Egs. (15){(16) cornverges.

(17)

3.2 Boundary value problem form ulation

When computing a branch of solutionsto an ODE of the form (1), parametrized by initial

conditions and the integration time T, one must keepin mind that (1) hasin nitely many
solutions and boundary or integral constrairts must be imposed. Furthermore, the pseudo-
arclengthconstraint (16) is then typically givenin functional form; more details canbe found
in [Doedelet al., 19910. This meansthat the possibly unknown total integration time T is
embeddedin the equations. To this end, the vector eld (1) is rescaledsothat integration
always takes place over the interval [0; 1], and the actual integration time T appearsas a
parameter. Hence,in this context, Eqgs. (15){(16) take the form

x(t) = Fxu(t); 1 (18)
g(xl(o);xl(l); 1) = 0 (19)
1
a(xa(s); 1) ds = O (20)
Z, 0
Xi() Xp( ) %()d +(1 o) o = 5 (21)

0

wherethe dimensionof ; must be chosenconsistely with the dimensionsof the boundary
conditions (19) and the integral constrairts (20) in order to ensurea one-dimensionafamily
of solutions. Again we stressthat the cortinuation stepsizeis for the ertire solution X, and
not just for the parametervector ;. Equations(15){(16) must besolvedfor X, = (X1(); 1);
givena previoussolution Xo = (Xp( ); o) of the ODE and the path tangernt Xo = (Xp( ); -0).
That is, in a function spacesetting, Egs. (18){(20) correspnd to the equation F(X) = 0,
asin Eq. (14). Note that the dimension(m + 1) of X = (x(); ) may be much larger than
the dimensionn of the phasespaceof (1). In particular, always contains the parameter
T, which may or may not vary during the cortinuation; seeSec.3.3for speci ¢ examples.If
= Tthenf x.(t); 1 = Tf x4(t) .

In ead cortinuation step, Egs. (18){(21) are solved by a numerical boundary value al-
gorithm. Here, the padkage AUTO [Doedel,1981 Doedelet al., 1997 Doedelet al., 200Q
is used,which usespiecewisegpolynomial collocation with Gauss-Legendreollocation points
(also called orthogonal collocation), similar to COLSYS with adaptive mesh selection
[Ascher et al., 1995, De Boor & Swartz, 1973 Russell& Christiansen,1978. In combina-
tion with cortinuation, this allows the numerical solution of “di cult’ orbits. Moreover,
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for the caseof periodic solutions, AUTO determinesthe characteristic multipliers (or Flo-
guet multipliers) that determine asymptotic stability and bifurcation properties, as a by-
product of the decompsition of the Jacobian of the boundary value collocation system
[Doedelet al., 1991h Fairgrieve & Jepson,1991; seealso[Lust, 2001].

3.3 BVP contin uation of the (un)stable manifold of an equilibrium

Consider now the situation that (1) has a saddle equilibrium xy with a two-dimensional
unstable manifold, meaningthat the JacobianDf (xo) has exactly two eigervalues ; and

> with positive real part. Supposefurther that v, and v, are the assaiated (generalized)
eigervectors. We are looking for solutions of the system

xqt)
x(0)

Tf x(t) ; (22)
Xo+ (cos()vi+ sin( )vy); (23)

which is a combination of Eqgs. (18) and (19) with = ( ;T). Note that in Eqgs. (22){(23)
the continuation equation correspnding to Eq. (21) (or Eg. (16)) has beenomitted, even
though it is an essetial part of the cortinuation procedure. The cortinuation equation will
alsonot be written explicitly in subsequencortinuation systems.

If the eigervalues ; and , arereal,thenit is advantageousto choosethe initial condition
on the ellipsethat is given by the ratio of the eigervaluesas

x(0) = Xo+ cof )L +sin( )2
J 1 J 2

In other words, in the cortinuation Eq. (23) is replacedby Eq. (24).

Obvious starting data for the system (22){(23) consist of a value of (0 < 2),
T = 0,andx(t) = xg+ (coq )vi+ sin( )v,), that is, x(t) is constart. An actual trajectory
for a specic value of can now be obtained using cortinuation as well. While this may
seemsuper uous, it hasthe addedbenet that the output les of this rst stepin AUTO
are then compatible with subsequen cortinuation steps. In this cortinuation step, system
(22){(23) is solved for X = (x();T), keepingthe angle xed. Here, T > 0 for an unstable
manifold and T < O for a stable manifold sincethen integration is backward (or negative)
in time.

Once a single orbit is obtained up to a desiredlength, de ned by a suitable end-point
condition, then this orbit is cortinued numerically as a boundary value problem where the
initial condition on the small circle (or ellipse) is now a componert of the cortinuation
variable. In this way, the family (8) of sud orbits on (part of) the stable manifold W"(x)
is appraximated. The simplestway to do thisisto x T in the cortinuation system (22){
(23) after the rst step and allow , the angle of the starting point on S to vary freely.
It is important to note that is not used as the sole cortinuation parameter. Instead
ead cortinuation step is taken in the full cortinuation variable X = (x(); ), sothat the
corntinuation stepsizeincludesvariations alongthe ertire orbit. Also, isoneofthe variables
solved for in eat cortinuation stepand it is not xed a priori.

Insteadof keepingT xed, there areother waysto performthe cortinuation. For example,
one can constrain the end point x(1) asonewishes. This is done by adding to system(22){

(24)
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Figure 6: Continuedtrajectorieson W*(0) nearthe origin starting from the ellipse(24) with
=50, = 22828and , = 2667;the coloringis accordingto integration time T,
wherered indicates faster and greenslover ow.

(23) the equation
g(x(1); ;T) = O (25)

Here g is an appropriate functional, chosento cortrol the end point in a desirablemanner,
for example,by requiring one coordinate to have a particular xed value. The cortinuation
variable cannow be takenasX = (x(); ;T), while is kept xed.
Another possibility is to imposean integral constrairt alongthe orbit, namely adding to
(22){(23) the equation
Z 1
h(x(s); ;T)ds L = O (26)
0
Now h is an appropriate functional, chosento cortrol the orbit in a desirablemanner. The
cortinuation variable can again be takenas X = (x(); ;T), but now keepingL xed. A
particularly usefulchoiceis h(x; ; T) = Tjjf x; jj, which resultsin the total arclength of
the orbit being kept xed during the cortinuation. Finally, it is ertirely possibleto usea
conmbination of end-point conditions and integral constrairts, but this will not be usedhere.
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Figure 7: The Lorenz manifold computedwith the cortinuation method of Doedel. Panels
(@), (b) and (c) shav the manifold wherethe arclength of the trajectoriesis xed at L = 250.
In panel(a) the coloring indicatesthe arclength alongtrajectoriesand in panels(b) and (c)
the coloring is accordingto the total integration time T of trajectories; the strong stable
manifold lies inside the red region. Panels(a) and (c) show all trajectories, while panels
(b) shows only ewery fourth trajectory asa tube. Panel (d) demonstratethat only a part of
interest of the stable manifold may be computed, sud asa part of the main scroll; this was
doneby xing x = 25 at the end point of trajectories.
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3.4 The Lorenz manifold as a family of tra jectories

Figure 6 shavs an enlargemenh near the origin of the orbits that were cortinued on the
Lorenz manifold W*3(0) (for negative T). The angle is allowed to vary from Oto 2 , so
that the initial condition variesalongthe ellipsein the middle of the image,which is de ned
by (24) with =50, ;= 22828and ; = 2:667. All orbits have the samearclength
and the coloring is in terms of the total integration time T along eadt trajectory. In other
words, the coloring givesan indication of the speedof the ow alongtrajectories,wherered
is fast and greenis slover. The ow is fastest along the strong stable manifold, which is
located in the middle of the red region. Note that the disctribution of points is much denser
near the top and bottom of the ellipse, that is, near the invariant z-axis, which ensuresa
good distribution of orbits over the Lorenz manifold W *(0).

Figure 7(a){(c) shows the Lorenz manifold W*(0) covered by 2284 trajectories of ar-
clength 250, wherethe ellipseof initial conditionsis asin Fig. 6. The number of meshpoints
along ead trajectory wasNTST = 75, with NCOL = 4 collocation points in eat meshin-
terval. Figure 7(a) shonsthe ertire computedpart of the Lorenz manifold from the common
viewpoint. The coloring changesfrom blue to red accordingto the meshpoint number along
a trajectory, which givesan impressionof the arclength of trajectories. Figures 7(b) and (c)
shav enlargemets wherethe coloring shaws the total integration time T alongtrajectories.
As in Fig. 6, this indicates the speedof the ow; the strong stable manifold is located in
the red region of fast ow. In Fig. 7(b) ewery fourth trajectory is renderedas a thin tube.
This resultsin a better senseof depth sothat an impressionis given of how trajectorieslie
in phasespaceto form WS(0). Figure 7(c) is an enlargemen of Fig. 7(a) (though with a
di erent color sheme) shaving how the manifold forms a scroll.

Figure 7(d) illustrates the exibilit y of the method by shaving part of the Lorenzmanifold
computed by numerical cortinuation of solutionsto the boundary value problem (22){(23)
and (25) for the choiceg(x; ; T) = x. This resultsin the x-coordinate of the end point x(1)
being kept xed during the cortinuation, and it wassetto x = 25 in the computation.
For an appropriate choiceof , for which sometra jectoriesintersectthis plane seeral times,
the cortinuation procedurethen naturally leadsto non-monotonousvariation of , therehy
allowing the computation of a scroll-like structure on the stable manifold. In Fig. 7(d) the
origin is the point on the right from which all trajectoriesemerge.

4 Computation of fat tra jectories

The method of [Henderson,2003 computesa compact piece of a k-dimensional invariant
manifold by covering it with k-dimensionalsphericalballs in the tangert space,certered at
a set of well-distributed points. This setis found by computing so-calledfat trajectories,
which are trajectories augmerted with tangert and curvature information at ead point.
The certers of the balls are points on the fat trajectory, and the radius is determinedby the
curvature.

For the implemerted caseof computing a two-dimensionalunstable manifold W"(x) of
a saddlepoint of (1), the method starts with a small circle S EY(xo) and at ewery step
circular disks are added along a fat trajectory with a xed total arclength (from x,) of L.
Initially all fat trajectoriesstart on S, but at later stagesfat trajectories begin at points
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interpolated where two fat trajectories move too far from ead other. The method stops
whenW"(xo) hasbeencoveredup to the prescribed arclength L.

4.1 Fat tra jectories on the global stable manifold

The method requires a basis for the tangert spaceand the curvatures in that basis to
construct the disks. As was mertioned in the introduction, invariant manifolds are not
de ned locally, sothat there is no local way of determining the tangert spaceor curvature
for a given a point on the invariant manifold. This information is known at points on
the initial curve S EY(xo), for example,the tangert to S is known, and if the ow is
transverseto the initial curve S, f can be usedas the secondtangert. The circle S (or
possibly an ellipse) may be chosento be transverseto the ow for su ciently small . The
curvature information can be obtained using the secondderivative tensor.

The tangert and curvature can be “transported’ over W"(xo) by deriving and solving
ewlution equationsfor them along a trajectory. To this end, onewrites the parametrization
(5) in the form

VA t
x@ )=c( )+ f(x(s; ))ds; (27)

0
wherec( ) parametrizesS with the one-dimensionalparameter . (An exampleof sud a
parametrization is (24).) Then the tangert spaceat x(t; ) is spannedby x and x; = f,
and the correspnding curvatures are given by the secondderivativesx , x; = fyx and
Xy = fyf. Evolution equationsfor the unknown quartities can be found by di erentiating

(27)

d

ax = f; (28)
d

G T fxX ; (29)
%x = fuX A+ fuX X (30)

Note that, evenif x is orthogonalto f at the initial point, there is no reasonto expect the
basisto remain orthogonal. In [Henderson,2003], equationsare derived for the ewlution
of a local parametrization which doesremain orthonormal and has minimal changein the
basis along the trajectory. (This is analogousto nding Riemannian normal coordinates
in gravitation, where trajectories play the role of geadesics[Misner et al., 197Q.) If the
tangerts in the local parametrization are ug and u,, they ewlve accordingto

%uo = fyUo UifxUoUp UjfyUguy; (31)
d
gl = fyus  ugfyusug ujfeu;ug: (32)
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Figure 8: Two adjacert fat trajectoriesstarting from S . A newfat trajectory is started from
the point wherethe two fat trajectories separate. This point can be found by interpolation
betweentwo suitable meshpoints, which is indicated by the greenlines.

4.2 Interp olation points on the invariant manifold

The method starts with a set of well-distributed points on the initial curve S , which can
be found using the algorithm described in [Henderson,2003. At ead sud point on S

an orthonormal basisfor the invariant manifold and secondderivatives of the manifold in
that basisare computed, and usedasinitial conditionsfor nding a set of disks along a fat
trajectory. Becausetrajectoriesmay move apart from ead other, thesedisks will generally
not cover WY(xo); seeFig. 8. This meansthat additional fat trajectories must be started
at suitable points until WY(Xo) is covered. In order to generatea well-spacedset of points
on WY(xg), one choosesa starting point from the boundary of the computed part of the
manifold.

The method in [Henderson,2003 represeis the boundary of the union of disksfD;g
using polygonsrelated to the VVoronoi regionsof the certers of the disks. A disk D; consists
of a certer x(tj; i) (a point on afat trajectory), the orthonormal basisfor the tangert space
of the manifold ug(tj; ;) and u(tj; i), a radius R;, and polygon P;. The polygon P; is
represeted by a list of verticesin the tangernt spaceand edgesjoining them (this actually
works in arbitrary dimensions). The polygonsare constructedin sud a way that ead edge
of P; which crossedhe boundary of D; corresmpndsto a neighboring disk D;. The situation
is sketched in Fig. 8.

Supposethat part of WY(X,) is represeted this way, and a new disk D; is to be added.
P; is initially a squarecertered at the origin with sides2R;, and for ead disk D; which
intersectsthe new disk D; complememary half spacesare subtracted from P; and P;. The
projection of D; into the tangert spaceat x; is appraximated by a disk of radius R; certered
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at the projection of x;. If R; and R; are small enoughso that the distance between the
tangert spaceand the manifold is small (this dependson the curvature of W"(Xxg)), then
this is a good appraximation. This pair of disks in the tangernt spaceat x; de nes a line
cortaining the intersection of the circles bounding the disks, and one subtracts from P; a
half spaceboundedby this line. The sameapproad is usedto update P; by projecting X;
into the tangert spaceat X; .

With thesepolygonsa point on the boundary of the union caneasilybe found. Any point
on D;\ P; is nearthe boundary of the union (the distanceto the boundary is cortrolled
by the distance betweenthe tangernt spaceand the manifold at the radius). Points on the
boundary where two disks meet correspnd to points where an edgeof P; crosses D; (the
point obtained is in the tangent spaceof the manifold and must be projected onto the
manifold).

If one considersthe part of the invariant manifold that is not yet covered (that is, the
exterior of the union of neighborhoods, t < T), one can de ne something resenbling a
constrained minimization problem (it lacks a global objective function) which looks for a
point in this regionthat lies furthest bad in time underthe ow. With a mild assumption
about the shape of the region (it must be a topological ball), sud a minimal point must
exist. It must lie on the boundary of the regionat the intersectionof two disks. This point is
a minimum' if the ow vector extendedbadkwards intersectsthe interior of the edgejoining
the certers of the intersecting disks. (This is, in fact, Guckenheimerand Vladimirksy's
upwinding criterion; seeSec.5.) Onecaneasily nd candidate points on the boundary from
the edgesof the polygons,and cheding the upwinding criterion is a matter of computing a
projection. One canthen either interpolate tangerts and curvatures from the disks' certers
(the method usedin the computations shovn in Fig. 9) or use a homotopy (as Doedel
usesin AUTO [Doedel, 1981 Doedelet al., 1997 Doedelet al., 200q) to move from the fat
trajectory from S through the certer of one of the disksto the fat trajectory which starts
on S and passeaunderneaththe interpolation point.

This interpolation to nd newstarting points for fat trajectoriescompletesthe algorithm.
It computesa covering of the manifold WY(xo) with disks certered at well-spacedpoints.
Provided the disks are su cien tly small comparedto the curvature, the algorithm is guar-
anteed to terminate, and all points lie on trajectoriesthat originate on the initial curve S
or at points interpolated betweennearly trajectories.

The fat trajectory, with its string of disksand polygons,is integrated until a prespeci ed
total arclength L is readed. This is repeatedfor all the points on the initial curve. (The
total integration time T of fat trajectoriesvarieswith the initial condition.)
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Figure 9: The Lorenz manifold computed with the method of Hendersonup to a total
trajectory arclength of 250. Panel (a) shows a view of the ertire manifold, panel (b) a
transparert enlargemen near the main scroll, panel (c) shows the part of the manifold for
X < 0 together with the Lorenz attractor and the one-dimensionalstable manifolds of the
two other equilibria, and panel (d) givesan impressionof the computed mesh.
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4.3 The Lorenz manifold covered by fat tra jectories

Figure 9 shows the Lorenz manifold W*5(0) computed (using integration badkward in time)

up to a total trajectory arclength of 250. The step was cortrolled so that the distance
betweenthe tangert spaceand W"(x,) over ead disk was lessthan 0.5. The scaledtime

step along trajectorieswas 0.01 (many more than onetime step is taken betweensucessig
points on afat trajectory), and noradiusis greaterthan 2.0. The result wasatotal of 221,210
disks. Figure 9(a) shavs the erntire computed part of the Lorenz manifold from the common
viewpoint. Figure 9(b) shavs an enlargemen of the Lorenz manifold nearthe certral region
wherethe manifold is now transparert. Notice the di erent "sheets'of manifold in the scroll
and the extra helicesforming around the z-axis. This complicated structure of the Lorenz
manifold is further illustrated in Fig. 9(c) where only the half of W*(0) with negative x-

coordinate is shovn. The intersection curves of the manifold with the plane fx = Og are
showvn in white. Also shawvn is the one-dimensionalunstable manifold WY(0) (red curve)
accunulating on the the Lorenz attractor (yellow) and the stable manifolds (blue curves) of
the other two equilibria.

Figure 9(d) gives an impression of the computed mesh. The fat trajectories are the
white curvesand they are surroundedby the polygonsthat make up the Lorenz manifold.
Clearly visible are points wherenew fat trajectoriesare started from interpolated data. The
boundary of the manifold at termination simply consistsof the disks that are distance L
from xo (measuredalong trajectories).

5 PDE form ulation

Another method for approximating invariant manifolds of hyperbolic equilibria was intro-
ducedby [Gudkenheimer& Vladimirsky, 2004. Their approad locally modelsa codimension-
oneinvariant manifold as the graph of a function g satisfying a quasi-linear PDE that ex-
presseshe tangencyof the vector eld f of (1) to the graphof g. The PDE is then discretized
in an Eulerian framework and the manifold is approximated by a triangulated mesh. We
denoteby M the triangulated approximation of the "known' part of the manifold. It canbe
extendedby adding simplicesat the current polygonal boundary @ in a locally-outward
direction in the tangert plane. The discretizedversion of the PDE is then solved to obtain
the correct slope for the newly added simplices. To avoid solving the discretizedequations
simultaneously an Ordered Upwind Method (OUM) is usedto decouplethe system: the
causalily is ensuredby ordering the addition/recomputation of new simplicesbasedon the
lengths of the vector eld's trajectories.
Two key ideasprovide for the method's e ciency:

1. The useof Eulerian discretizationensureghat "geometricsti ness', a high non-uniformity
of separationrates for nearby trajectorieson di erent parts of the manifold, doesnot
a ect the quality of the produced approximation: new simplicesconstructed at the
currert boundary @/ are asregular asis compatible with the previously constructed
mesh.

2. SinceOUM is non-iterative, the PDE-solving step of the method is quite fast.
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5.1 Tangency condition

The method is explainedherefor a two-dimensionalmanifold W' (x) of a saddlepoint xg in
R3; sedGuckenheimer& Vladimirsky, 2004 for moredetails. Let (u;g(u)) = (u1; Us; g(us; uy))
be alocal parametrization of the manifold of (1). Thenthe vector eld f shouldbetangertial
to the graph of g(us; u,), that is,

@@’Dlg(ul;w);@%g(ul;w); 1 f (uisuz;g(us;up)) = O (33)
The above rst-order quasi-linearPDE canbe solvedto "grow' the manifold in steps,because
the Dirichlet boundary condition is speci ed onthe boundary @ of the pieceof the manifold
computed in previous steps. The initial boundary is chosenby discretizing a small circle
or ellipse S EY(Xxp) that is transverseto f, sothat the vector eld is outward pointing
everywhere.

Unlike a generalquasi-linearPDE, Eq. (33) always hasa smaoth solution aslong asthe
chosenparameterization remainsvalid. Thus, switching to local coordinates when solving
the PDE avoids cheding the cortinued validity of the parameterization.

In [Gudkenheimer& Vladimirsky, 2004 the PDE formulation (33) is extendedto approx-
imate two-dimensionalmanifoldsin R". A similar characterization can be usedfor general
k dimensionalinvariant manifoldsin R", but the current numerical implemenation relies
onk = 2.

The PDE approad for characterizing invariant surfacesgoesbad to at leastthe 1960s.
The existenceand smaothnessof solutions for equationsequivalent to (33) were the sub-
jects of Sadker's analytical perturbation theory [Sadker, 1969 and later serned as a basisfor
seeral numerical methods, for example,those in [Dieci & Lorenz, 1995, Dieci et al., 199]
Edoh et al., 1995. Howeer, all this work was done for the computation of invariant tori.
There aretwo very important distinctions betweenthe PDE methodsfor tori and the method
presened in this section:

1. Theseprior methods assumethe existenceof a coordinate systemin which the invari-
ant torus is indeed glokally a graph of a function g : T 7! R" kK. This implies the
availability of a global mesh,on which the PDE can be solved. For invariant manifolds
of hyperbolic equilibria sud a meshis not available a priori and hasto be constructed
in the processof "growing' the appraximation M .

2. For the invariant tori computations, the solution function g hasperiodic boundary con-
ditions; hence,the discretizedequationsare inherertly coupledand have to be solwed
simultaneously
For the appraximation of WY(xo) all characteristics of the PDE start at the initial
boundary (chosenin EY(X,)) and run “outward'. Knowledgeof the direction of infor-
mation ow can be usedto decouplethe discretizedsystem,resulting in a much faster
computational method.

5.2 Eulerian discretization

To enable decoupling of the discretized system, our discretization of Eq. (33) at a new'
meshpoint y hasto be ‘upwinding’, i.e. it shoulduseonly previously-computedmeshpoints
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Figure 10: Geometric interpretation of Eq. (34). The seart spacefor y is the normal
subspace,here correspnding to the line spannedby w. Herey?! and y? are points in
AcceptedF ont, while ¥ is a Considered point.

straddling y's appraximate trajectory. For a two-dimensionalinvariant manifold in R3,
let G(uq;uy) be a piecewise-lineamumerical approximation of the local parameterization
g(uz;uy). Consider a simplex yyly?, wherey = (ui;ub; G(ui;ub)) = (u';G(u")) and
y = (Ug; U, G(ug;up)) = (u;G(u)). Supposethat the verticesy?! and y? are two adjacert
mesh points on the discretization of the current manifold boundary, called AcceptedF ont
(thus, G(u?) and G(u?) are known and can be usedin computing G(u)). If u is chosenso
that the simplexuu tu? is well-conditioned,theny = (u;G(u)) canbe determinedfrom the
PDE. De ne the unit vectorsP = _H—d- and let P be the squareinvertible matrix with
the P 's asits rows. The directional derivative of G in the direction P can be computedas
vi(u) = (G(u) G(u'))=ku u'k, fori= 1;2. Therefore,r g(u) r G(u)=P v, where

vV = xl . This yields the discretizedversionof Eq. (33) as
2
P tv(u) ,fi(u;G(u)) + P *v(u) ,fa(u;G(u)) = fa(u;G(u)): (34)

This nonlinear equation can be solved for G(u) by the Newton-Raphsonmethod or any
other robust zero-soler. In addition, it has an especially simple geometricinterpretation
if the local coordinates are chosenso that G(u') = G(u?) = 0. Namely, we reducethe
problemto nding the correct 'tilt' of the simplexyy'y? with respectto the simplexyy'y?
wherey = (u;0) is a point of the Considered front. Hence,solving Eg. (34) is equivalent
to nding 2 R sudthat f (¢ + w) liesin the plane de ned by y?!, y2, andy = § +

w, wherew is the unit vector normal to Yy'y?; seeFig. 10. A similar discretization
and geometric interpretation can be derived for the general caseof k 2 and n 3
[Gudkenheimer& Viadimirsky, 2004.

The descriked discretization procedureis similar in spirit to animplicit Euler's metha for
solvinginitial value problemssincey! andy? are assumedo be known and the vector eld
is computed at the to-be-determinedpoint y. In solving rst-order PDEs, a fundamenal
condition for the numerical stability requiresthat the mathematical domain of dependence
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Figure 11: An acceptable(a) and an unacceptable(b) approximation of f (y); The range
of upwinding directions is shovn by dotted lines; the local linear appraximation to the
trajectory is shovn by a dashedline; y is its intersectionwith the liney y . In the second
casethe upwinding criterion is not satis ed and the update for y should be computedusing
another segmen of AcceptedF ont.

should be included in the numerical domain of dependence. Since the characteristics of
PDE (33) coincidewith the trajectoriesof the vector eld, G(u) should be computed using
the triangle through which the correspnding (approximate) trajectory runs. Thus, having
computedy = (u;G(u)) by (34) using two adjacert meshpoints y andy , we needto
verify an additional upwinding condition: the linear appraximation to the trajectory of y
shouldintersectthe liney y at apoint y = (¢; G(&)) that liesbetweeny andy ; seeFig.
11. An equivalent formulation is that f (y) should point from the newly computed simplex
yyy.

Algebraically, if y solves(34),thenf(y) = 1y y)+ 2y vy ); thus,the upwind-
ing criterion above simply requires 1; > 0. In this casethe discretization is locally
second-orderaccurate and the arclength ( y) of the trajectory up to the point y can be
approximated as

kf (y)k

ot aly)t 2(y) da(0ry): (35)
1 2

(y) ky yk+ (y)
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Numerical evidenceindicates that the resulting method is globally rst-order accurate
[Gudkenheimer& Vladimirsky, 2004.

5.3 Ordered Upwind Metho d

Ordered Upwind Methods (OUMSs) were originally introduced for static Hamilton-Jacobi-
Bellman PDEs [Sethian & Vladimirsky, 2003. In [Guckenheimer& Vladimirsky, 2004 the
sameidea of sppce-marching for boundary value problemsis usedto solve Eqg. (33). All mesh
points are divided into those that are Accepted that is, already xed as belongingto the
approximation M , and those Considered, which are in a tentativ e position adjacert to the
current polygonal manifold boundary @M , called the AcceptedRont. A tentativ e position
canbe computedfor eat Consideredmeshpoint y underthe assumptionthat its trajectory
intersects @1 in someneighborhood N (y) of that point. In other worqs, y is updated
by solving Eq. (34) for a “virtual simplexX'yyy sudhthatyy 2 @1 N(y) and the
upwinding criterion is satis ed. All Considered points are sorted basedon the approximate
trajectory arclengths ( y) de ned by (35). The method starts with @/ discretizinga small
ellipsein EY(xo). That initial boundary is surroundedby a single "layer' of Considered
meshpoints (alsoin EY(Xg)).

A typical step of the algorithm consistsof picking the Considered point ¢ with the
smallest and constructing from it an Accepted point y as was descrilked in Sec.5.2.
This operation modi es @ (y is included, and the meshpoints that are no longer on the
boundary areremoved) and causesa possiblerecomputation of all the not-yet-Acceptedmesh
points neary. If y is adjacent to y andy y is on the boundary, then the meshis locally
extendedby adding a new Considered meshpoint y connectedto y y in a tangernt plane.
To maintain good aspect ratios of newly-createdsimplices,the current implemertation relies
on an "adwancing front mesh generation' method similar to [Peraireet al., 1999. Other
local mesh-extensiorstrategiescan be implemerted similarly to methodsin [Rebay, 1993]or
[Henderson,2003.

The vector eld near @1 determinesthe order in which the correct 'tilts' for tentative
simplex-patdhesare computedand the Considered meshpoints are Accepted This ordering
has the e ect of reducing the approximation error (since a mesh point y rst computed
from a relatively far part of N (y) is likely to be recomputedbeforeit gets Accepted. The
default stopping criterion isto enforce ( y) L, sothat the algorithm terminateswhenthe
maximal approximate arclength L is readed. Other stopping criteria (for example, based
on Euclideanor gealesicdistanceor the maximum number of simplices)can be usedaswell.
Current algorithmic parametersinclude L, the radius Ry of the neighborhood N (y), and the
desiredsimplexsize . (The simplexsizeis xed in the presen implemertation; it could be
adapted accordingto curvature information.) As in the original OUMSs, the computational
complexity of the algorithm is O(M logM ), whereM = O(L2?= ?) is the total number of
meshpoints and the (logM) factor results from the necessi to maintain a sorted list of
Considered meshpoints. A detailed discussionof the algorithmic issuescan be found in
[Gudkenheimer& Vladimirsky, 2004.
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Figure 12: The Lorenz manifold computed with the method of Guckenheimer and
Vladimirsky up to a total trajectory arclength of about 174. Panel (a) showns a view of
the entire manifold, panel (b) an enlargemen near the main scroll where the manifold is
shawvn transparert, panel (c) shonvs how the manifold interacts with the Lorenz attractor,
and panel (d) givesan impressionof the computed mesh.
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5.4 The Lorenz manifold computed with the PDE form ulation

Figure 12 shows the Lorenz manifold W*5(0) computed up to an approximate total ar-
clength of L = 174. The computation was started from S ES(0) with = 20,

= 0:6 and Ry = 4, which resulted in the total of 271469mesh points. The color-
ing shaws arclength along trajectories where blue is small and red is large. The manifold
was renderedas a two-dimensionalsurfacewith Matlab ; other illustrations can be found
in [Guckenheimer& Vladimirsky, 2004 and for animations see[Vladimirsky, 2004.

Figure 12(a) shows the ertire computed part of the Lorenz manifold from the common
viewpoint. Figure 12(b) is an enlargemen nearthe certral scrollswherethe manifold is now
shawvn transparert. Clearly visible aretwo secondaryspiralsforming nearthe positive z-axis.
The coloring is sud that points of the samecolor are equally far away from the origin in
arclengthalongtrajectories. Figure 12(c)is a further enlargemeh nearthe unstable manifold
WY(0) accunulating on the Lorenz attractor. This clearly shovs how the Lorenz manifold
‘rolls’ into both wings of the Lorenz attractor, creating di erent sheetsthat do not actually
intersectthe shawvn trajectoriesrepreseting the unstable manifold WY(0).

Figure 12(d) givesan enlargedimpressionof the computed meshlooking into one of the
outer scrolls. The simplicesof the meshare su cien tly uniform in spite of the complicated
geometryof the manifold they represeh The red boundary of the computedmanifold is not
a smaoth curve, becauset is formed simply by the last simplicesthat were added locally.

6 Box covering

In cortrast to the techniquesdescrilted so far, the method of [Dellnitz & Hohmann, 1996
Dellnitz & Hohmann, 1997] presened in this section approximates invariant manifolds by
objects of the samedimension as the underlying phasespace. It rst producesan outer
covering of a local unstable manifold by a nite collection of sets. This covering is then
‘growvn' in order to cover larger parts of the manifold analogouslyto what is descriked in
Sec.s2 and 5. In combination with set-orierted multilevel techniques for the computa-
tion of invariant sets, sud as periodic orbits, attractors and generalchain recurrert sets,
the technique allows, in principle, for the computation of manifolds of arbitrary dimension,
where the numerical e ort is essetially determined by the dimension of the manifold. In
conmbination with rigorous techniques for the implemertation of this approad, it is pos-
sible to compute rigorous coverings of the consideredobject. For a more detailed expo-
sition of the generalmethod see[Dellnitz & Hohmann, 1996, Dellnitz & Hohmann, 1997
Dellnitz et al., 2003, Dellnitz & Junge, 2002]. The algorithm is implemerted in the software
padkage GAIO [Dellnitz et al., 2001.

6.1 The box covering algorithm

The box covering algorithm appliesto a discrete-timedynamical system,that is, to a di eo-

morphismD. In the context of approximating global manifolds, it cancomputethe unstable
manifold of an (unstable) invariant set of D in a compact region of interest Q. In this

section, we explain how this method can be usedfor the computation of a two-dimensional
(un)stable manifold of a saddlex, in R®.
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Here, the di eomorphism D : R® ! R?® is given by the time- map of the vector eld
(1). For an unstable manifold > 0, while for a stable manifold < 0 to accoun for
reversing time. Numerically, the map D may be realized by classicalone-stepintegration
sthemes. Sincethe algorithm involves integration over short time intervals only, typically
the requiremerts in terms of accuracyor presenation of structures of the underlying vector
eld f are rather mild. The di eomorphism D then has a hyperbolic saddle xed point
X = Xg and, in the case < 0, x has a two-dimensionalunstable manifold W"(x), which is
idertical to the stable manifold of xg.

The idea of the algorithm is asfollows. Imagine a nite partition P of Q. The method
rst nds a(small) collectionG P that coversthe local unstable manifold W (x). This
local covering of WY(x) is extendedin steps, where in ead step the setsin the current
collection G, are mapped forward under D. All setsin P that have an intersectionwith the
imagesof G, are addedto the current collection of sets,yielding G .

More formally, let Py; Py;::: be a nestedsequenceof successiely ner partitions of Q:
We take P, = fQg and ead elemet P 2 P-,; is cortained in an elemen P°2 P- and
diam(P) diam(P9 for some xed number0< < 1.

The algorithm consistsof two main steps:

1. Initialization: Compute an initial covering Q‘)k) P-+« of the local unstable mani-
fold W, .(x) of x. (Here the index k indicates the neness of the initial partition.)
This can be achieved by applying a subdivision algorithm for the computation of rel-
ative global attractors to the elemen P 2 P- cortaining x for somesuitable ; see
[Dellnitz & Hohmann, 1996].

2. Growth: From the collection q“‘) the next collection C,(',f)l is obtained by setting
q(',f)l =fP 2P, :D(B)\ P 6 ; for someset® 2 qk)g:

This step is repeated until no more setsare addedto the current collection, that is,
until q(k) = f)l

We can shaw that this method corvergesto a certain subsetof WY(x) in Q. Namely, let
Wo = W;g.(x)\ P, whereP is the elemen in P- cortaining x and de ne
Wisi =DW))\ Q; j=012::::
Then we have the following corvergenceresult (see[Dellnitz & Hohmann, 1994):

1. the setst(k) = chj(k)P are coveringsof W; for all j; k = 0;1;:::;

2. for xed j andk! 1, the covering Cj(k) convergesto W; in Hausdor distance.

In general,one cannot guarartee that the algorithm leadsto an approximation of the
ertire setWY(x)\ Q. This is dueto the fact that parts of W"(x) that do not lie in Q may
map into Q. In this case,the method will indeednot cover all of W"(x)\ Q.

Under certain hyperbolicity assumptionson W!(x) it is possibleto obtain statemens
about the speedof corvergencen terms of how the Hausdor distancebetweenthe covering
and the approximated subsetof WY(x) dependson the diameter of the setsin the covering
collection; see[Dellnitz & Junge, 2003 for details.
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Figure 13: Coverings of the Lorenz manifold during the rst three growth stepsare shavn
in panels(a){(c), wherethe covering of the previousstep (the initialization box in the case
of (a)) is shown in yellow.

6.2 Realization of the metho d

The e ciency of the growth part of the algorithm signi cantly dependson the realization of
the collectionsP-. In the implemenration the P- are partitions of Q into boxes

B(c;r)=fy2R":jy; ¢j rifori=1:::;ng;
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wherec;r 2 R", r; > 0, arethe certer andthe sizesofthe box B(c;r), respectively. Moreover,
only partitions are usedthat result from bisectingthe initial box Q repeatedly, wherein this
processof bisecting the relevant coordinate direction is changed systematically (typically,
the bisectedcoordinate direction is varied cyclically).

Starting with Po = fQg, this processyields a sequenceP- of partitions of Q, that can
e ciently bestoredin a binary tree. Note that it is easyto store arbitrary subsetsof the full
partition P- just by storing the correspnding part of the tree. In fact, in the initialization of
the algorithm one starts with a singlebox on a givenlevel °, sothat the storedtree consists
of a singleleaf. Whene\er setsare addedto the current collection, the correspnding paths
are addedto the tree. Figure 13 illustrates the rst three growth stepsfor the computation
of a covering of the Lorenz manifold on level 18 of the tree (all other parametersare as
descrited in Sec.6.3 below). The yellow box in Fig. 13(a) was createdin the initialization
step and then grown in one step to obtain the blue boxes. Panels (b) and (c) shav two
further growth steps,wherethe covering of the previousstep is again shown in yellow.

The hierarchical storagesdhemehasanother crucial computational advantagein that it is
easierto decidewhich boxesare "hit' by mapping the boxesthat were addedin the previous
step of the cortinuation algorithm. Namely, for ead of theseboxesB 2 P, oneneedsto
computethe setF (B) = fB°2 P, jD(B)\ B®6 ;g. SinceB cortains an uncourtable
number of points, this problemmust bediscretized. The obviousapproad isto choosea nite
setT of test points in B and to approximate F (B) by F(B) = fB°2 P-, j D(T)\ B°6 ;g.
Usingthe tree structure, the determination of the box that cortains the imageof a test point
can be accomplishedwith a complexity that only dependslogarithmically on the number of
boxesin P- [Dellnitz & Hohmann, 1997.

6.3 Box covering of the Lorenz manifold

Figure 14 shows a box covering of the Lorenz manifold W*(0). For the computation the
time- map of the Lorenz system (2) was consideredwith = 0:1. This map is realized
by the classicalRunge-Kutta sdheme of fourth order with a xed step sizeof 0:01. The
region of interest Q is a box with radius (70; 70; 70) and certer (10 ;10 ;10 1); this o set
certering is for a practical reason: it avoids having the origin on the edgeof a box. Level
© = 27 of the tree wasusedand 16 growth stepswere performed, starting from a single box
containing the origin (i.e. k = 0). In ead growth step, an equidistart grid of 125test points
in ead box was mapped forward. The resulting object corntains more than 4 million boxes.

Figure 14(a) shows the ertire computed part of the Lorenz manifold from the common
viewpoint. The sameview is shavn in Fig. 14(b) but now the manifold is transparen.
Figure 14(c) shows an enlargemen of the transparert rendering near the certral region.
Becausethe method is using the time- map of the Lorenz system(2), the Lorenz manifold
rst growsinitially mainly in the direction of the strongunstabledirection until the boundary
of the box of interest is readied. This can be seennicely in Fig. 13. Later stepsof the
growth processthen start to build up the other part of the manifold, resulting in the images
in Fig. 14(a) and (b). The further enlargemen near the scroll of the manifold in Fig. 14(d)
gives a local impressionof the box covering. Notice that covering of the manifold has a
thicknessof seeral box diametersat the end of the scroll.
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Figure 14: The Lorenz manifold computed with the box covering method of Dellnitz and
Hohmann seenfrom the common viewpoint (a). In panels (b) and (c) the manifold is
renderedtransparertly. Panel(c) shovs an enlargemen near the z-axis, and panel(d) gives

a closerlook at the computed boxes.
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7 Discussion

After arecert urry of researt activity, seeral complememary methods are available today
to compute global (un)stable manifoldsin applications. While thesemethods are still some-
what under developmen and testing, we hope that this survey will encouragethe readerto
considercomputing sud global objects in systemsarising in applications.

Eadh of the methods preserted in the previous sectionsis basedon a particular point
of view of characterizing a global (un)stable manifold. Commonto all is the ideathat the
manifold must be "growvn’ from local information nearthe saddlepoint, and the di erence is
in how this is done. The choice of method will generallydepend on the application one has
in mind and on the particular questionsonewants to answer. This discussionis intended to
give an indication of the speci ¢ properties of the di erent approades.

Appro ximation by geodesic level sets. The method by [Krauskopf & Osinga,1999
Krauskopf & Osinga,2003 is presetly implemerted for two-dimensionalmanifolds of sad-
dle points and saddle periodic orbits in a phase spaceof arbitrary dimension; see also
[Osinga, 200Q Osinga,2003]. This implemertation approximates the manifold linearly be-
tweenmeshpoints, while the boundary value problems(9){(10) are solvwed by singleshooting.
It would be possibleto usehigher orderinterpolation betweenmeshpoints and collocation for
solvingthe boundary value problems. The method producesavery regular meshthat consists
of (approximate) gealesiccirclesand appraximate geadesics. This meansthat the manifold
is renderedasa geometricobject, independertly of the dynamicsonit. The meshis, in fact,
constructed soregularly that it can be interpreted as a crochet pattern. This allows oneto
producea real-life model of the Lorenz manifold; see[Osinga& Krauskopf, 2004 for details.
During a computation the interpolation error is cortrolled by prescribed meshquality param-
eters, sothat the correctnessof the method can be proved; see[Krauskopf & Osinga, 2003
for details.

The price onehasto pay for obtaining a guararteed ‘geometricmesh'is that one needs
to set up and cortinue a boundary value problem for eady new mesh point. This makes
the method more expensive comparedto other methods. With the non-optimized presen
implemenation and the accuracyparametersasin Sec.2.3, computing the Lorenz manifold
up to gedlesicdistance 140 takes about 10 minutes, while the larger imagein Fig. 5 with
69,900meshpoints took 40 minutes and 47 secondson an 800MHz Pertium 111 madine.

Becauseit is basedon the gealesic parametrization (6), the method works as long as
the gedesiclevel setsof this parametrization remain smooth circles. While this is not an
obstruction for computing the Lorenz manifold, there are exampleswherethe computation
stopswhen a geaesiccircle ceaseto be smaoth; see[Krauskopf & Osinga,2003. Further-
more, the method stopswhenit encourters an equilibrium or a periodic orbit on (the closure
of) the (un)stable manifold.

An implemertation for global (un)stable manifolds of dimensionthree would already be
quite challenging. First of all, geaesiclevel sets are spheresin this case,on which one
needsto compute a regular mesh. Secondly the method would require multi-parameter
cortinuation to cortinue the boundary value problems(9){(10).
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BVP contin uation of tra jectories. The method by Doedelis arguablythe moststraight-
forward one. The corntinuation calculationscan be carried out using the standard boundary
value cortinuation capabilities of AUTO. This meansthat all that is required are rather
standard AUTO equationsand parameter les. The orbits that make up the manifold are
computed very accurately due to the high accuracyof the orthogonal collocation method,
which is supercorvergert for the solution at the meshpoints and for scalar variables. Fur-
thermore, the boundary value cortinuation algorithms in AUTO, written in the f77 or C
programming language,are rather e cient, sothat the calculations can generally be done
in relatively little computertime. For example,computing the Lorenz manifold up to a tra-
jectory arclength of 250 with a high resolution of NTST = 75, asin Fig. 7(a){(c), takes30
secondson a 1.6 MHz Pertium M laptop; for NTST = 25, which still givesgood resulution,
the computation time (including writing the output) dropsto just over 10 seconds.

The method is very exible in that it allows for di erent boundary conditions at the
endpoint of a trajectory. This meansthat one can compute only a part of interest of the
manifold, as wasillustrated in Fig. 7(d). Howewer, the manifold cannot be "gronn’, sothat
the cortinuation must be repeatedif a larger part of the manifold is desired.

While visualizing or even animating the computed trajectories gives much insight into
the geometryof the manifold, it would require substartial post-processingo producea nice
meshrepresetation of the manifold as a two-dimensionalobject. In particular, the density
of the orbits may be high in areaswhere the further ewlution of the trajectories depends
sensitively on the current state. For example,in Fig. 7(a) and (c) the density of the orbits
is high along a curve in the direction of the z-axis, that is, the direction of the weakly stable
eigervector.

Computation of fat tra jectories. While also essetially computing trajectories, the

method of [Henderson,2003 doesproducea nice meshrepresetation by “fattening' the tra-

jectories with a string of polygonal patches. The method tends to minimize the need for

interpolation. When interpolation is neededthere is a guarartee that appropriate points ex-
ist, and at thosepoints information is available which allows higher order interpolation or the

generationof an interpolating trajectory. The algorithms for computating fat trajectories,
for nding athird-order approximation to the manifold, and for nding interpolation points

are implemerted for any dimensionk of the manifold. The interpolation itself is preseitly

limited to k = 2. The code usedto computethe Lorenz manifold is available asOpenSource;
see[Henderson,2003.

The computation of a fat trajectory is more expensiwe than straighforward integration,
becauseit adds equations for the ewlution of the tangert spaceand curvatures. How-
ewer, the implemenation of updating the computed boundary is quite e cient; seealso
[Henderson,2003. The overall algorithm is relatively fast. For example,the Lorenz mani-
fold in Fig. 9 was computed on a 375MHz Power3 processorin about 7.3 hours.

Finally, the algorithm may encouner a geometricproblem. It must be ableto distinguish
between mesh points on di erent sheetsof the invariant manifold, for example, where a
trajectory returns closeto itself. This can be doneby cheking the valuesoft and at the
certers of the disks, but it demandssu ciently small disks so that those quartities vary
only little acrossead disk. This requiremern may result in many more meshpoints being
computed than is necessaryto obtain a geometrically smooth manifold. This geometric
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problem occurswhentrajectories spiral tightly, asis the case,for example,on the unstable
manifolds of the two equilibria on the wings of the Lorenz attractor.

PDE form ulation. The PDE approat by [Gudkenheimer& Vladimirsky, 2004 leadsto
avery e cien t numerical method for computing a meshrepresetation of a global (un)stable
manifold. The computational cost of this method is largely independernt of the geometric
sti ness presen in the system. For example,the Lorenz manifold in Fig. 12 was computed
in under 90 secondon a Pertium 111 850 MHz processor.

The constructedapproximation M is "causal',that is, it cortains appraximate trajectories
for all of the meshpoints on @1 . The method is not restricted to manifolds where the
level curves of the gealesic distance remain smooth. In particular, the method can be
usedfor approximating manifolds cortaining homaclinic and heteraclinic trajectories; see
[Gudkenheimer& Vladimirsky, 2004 for examples.

The computational cost of adding eatcy mesh point is proportional to the codimension
(n k) of the manifold. When approximating manifolds of high codimension,this is clearly a
disadwantage comparedto other methods for which this costis proportional to the dimension
of the manifold k. A secondimitation of the method is that the constructedapproximation
is globally only rst-order accurate,in cortrast with, for example,the second-ordelaccuracy
of computing fat trajectories.

A variant of the code exists that usesa global coordinate systemde ned by a triangu-
lated mesh. This meansthat the PDE method could be usedin a cortinuation framework,
where an appraximation of the manifold for one parameter value is usedto build a global
parametrization for nearby parametervalues. This would reducethe costof locally extending
the meshnear @/ at ewery step of the cortinuation.

The current implemertation of the PDE approad works for two-dimensionalmanifolds
in a phasespaceof arbitrary dimension. An adaptive implementation for k 3 will have to
employ a robust algorithm for a higher-dimensionallocal meshextension,which remainsa
challenge.

Box covering. The box covering algorithm of [Dellnitz & Hohmann, 1994,
[Dellnitz & Hohmann, 1997 Dellnitz et al., 2001, Dellnitz & Junge, 2002]constructs a cov-
ering of (part of) the global invariant manifold. This covering consistsof a collection of
small boxes. The method is formulated for discretetime systems,and di erential equations
can be handledby consideringa correspnding time- -map. It allowsfor the computation of
(un)stable manifolds of arbitrary invariant sets. It is possible(and implemerted in GAIO )
to compute manifolds of arbitrary dimension. The “thickness'of the covering dependson
the cortraction rate transverseto the manifold. The stronger the cortraction, the fewer
“box-layers' along the manifold will be produced. In particular, the algorithm needsto be
modi ed in order to apply it to Hamiltonian systems[Junge, 20004.

The key implemertational issue,namely how to compute the image of a given box, is
typically discretizedby mappinga ( nite) setoftest points in ead box. Evidently, depending
on the properties of the underlying map, the choice of these points determinesthe quality
of the resulting covering. Using too few points may lead to missing boxes, while using too
many slows down the computation. There exist strategiesfor a near-optimal choice of these
points. In the casethat Lipschitz estimatesof the dynamical systemare available, one may
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compute rigorous coverings. In this case,it can be ensuredthat the manifold is cortained
inside the union of the setsin the constructed covering [Dellnitz et al., 2001,Junge, 20004.

The overall computational costis quite high when good resolution, that is, many boxes
are required. For example,the Lorenz manifold in Fig. 14 of more that 4 million boxestook
about 120 minutes on a 1:25 GHz G4 processor. Sincethe numerical cost dependson the
dimensionof the manifold, for manifolds of dimensionlargerthan two it may only be feasible
to compute rather coarseapproximations.
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