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Abstract

The computation of global invariant manifolds has seenrenewed interest in recent
years. We survey di�eren t approachesfor computing a global stable or unstable mani-
fold of a vector �eld, where we concentrate on the caseof a two-dimensionalmanifold.
All methods are illustrated with the sameexample| the two-dimensionalstable man-
ifold of the origin in the Lorenz system.
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1 In tro duction

Many applications give rise to mathematical models in the form of a system of ordinary
di�erential equations. Well-known examplesare periodically forced oscillators and the
Lorenz system (introduced in Sec.1.1); see,for example, [Guckenheimer& Holmes,1986,
Kuznetsov, 1998, Strogatz, 1994] for further references. Such a dynamical system can be
written in the generalform

dx
dt

= f (x); (1)

wherex 2 Rn and the map f : Rn 7! Rn is su�cien tly smooth. We remark that, in general,
the function f will dependon parameters.However, we assumethat all parametersare �xed
and use(1) as the appropriate setting for the discussionof global manifolds.

The goal is to understandthe overall dynamicsof system(1). To this end, oneneedsto
�nd special invariant sets,namely the equilibria, periodic orbits, and possibly invariant tori.
Furthermore, if theseinvariant setsare of saddletype then they comewith global stableand
unstablemanifolds. For example,the stable and unstablemanifolds W s(x0) and W u(x0) of
a saddleequilibrium x0 are de�ned as

W s(x0) := f x 2 Rn j lim
t !1

� t (x) = x0g

W u(x0) := f x 2 Rn j lim
t !1

� � t (x) = x0g;

respectively, where� t is the o w of (1). Hence,tra jectorieson the stable(unstable) manifold
converge to x0 in forward (backward) time. Knowing these manifolds is crucial as they
organizethe dynamicson a global scale.For example,stablemanifoldsmay form boundaries
of basinsof attraction, and it is well known that intersectionsof stableandunstablemanifolds
lead to complicateddynamicsand chaos.

Generally, global stable and unstable manifolds cannot be found analytically. Further-
more, they are not implicitly de�ned, meaning that it is not possibleto �nd them as the
zero-setof somefunction of the phasespacevariables. Hence,points on global invariant
manifolds cannot be found `locally'. Instead, these manifolds must be `grown' from local
knowledge,for examplefrom linear information near a �xed point x 0.

It is the purposeof this paper to reviewdi�erent numerical techniquesthat have recently
becomeavailable to compute theseglobal objects. We review �v e algorithms in detail and
characterizetheir propertiesusinga commontest-caseexample,namely, the Lorenzmanifold
which is introducednow.

1.1 The Lorenz manifold

The Lorenzsystem[Lorenz, 1963]is a classicexampleof a vector �eld with a chaotic attrac-
tor. It is given as

8
<

:

_x = � (y � x);
_y = %x� y � xz;
_z = xy � � z;

(2)
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Figure 1: The unstable manifold W u(0) (red curve) accumulates on the buttery-shap ed
Lorenz attractor. The blue disk is the linear approximation E s(0) of the Lorenz manifold
W s(0). Also shown are the two equilibria at the centres of the `wings' of the buttery and
their one-dimensionalstable manifolds (blue curves).

wherewe �x the parametersat the standard choice � = 10, %= 28 and � = 8=3, for which
one �nds the famousbuttery-shap ed Lorenz attractor. Note that the Lorenz system (2)
has the symmetry (x; y; z) 7! (� x; � y; z) of rotation by � around the z-axis. In particular,
the z-axis is invariant under the o w.

The origin is a saddlepoint of (2) with realeigenvalues� � and � � +1
2 � 1

2

p
(� + 1)2 + 4� (� � 1),

that is, approximately � 22:828, � 2:667 and 11:828. The origin is contained in the Lorenz
attractor, so that its one-dimensionalunstable manifolds W u(0) can be used to approxi-
mate the Lorenz attractor; this is illustrated in Fig. 1 where W u(0) is shown in red. At
the centers of the `wings' of the buttery are two more equilibria of (2), approximately at
(� 8:485; � 8:485; 27), which areeach other's imageunder the symmetry of (2). Each of these
equilibria hasonenegative real eigenvalue, giving rise to a one-dimensionalstable manifold,
and an unstable pair of complex conjugate eigenvalues with positive real part. Figure 1
shows all equilibria of (2) in green,together with their one-dimensionalglobal manifolds. As
mentioned, the red curve is the unstable manifold W u(0) of the origin, whoseclosureis the
Lorenz attractor. The blue curvesare the stable manifolds of the two other equilibria. The
blue disk lies in the linear eigenspaceE s(0) of the origin.

The Lorenz attractor, that is, the red curve in Fig. 1 conveys the chaotic nature of the
system,but doesnot give any information on the overall organization of the phasespaceof
(2). This role is played by the two-dimensionalstablemanifold W s(0) of the origin | which
we refer to as the Lorenzmanifold from now on. The Lorenzmanifold W s(0) is tangent at 0
to the eigenspaceE s(0) spannedby the eigenvectorsassociated with the eigenvalues� 22:828
and � 2:667. This is a genericproperty of stable and unstable manifolds; seeSec.1.2. Note
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the largedi�erence in magnitudebetweenthe two stableeigenvalues,leadingto a dominance
of the strong stable manifold, which is tangent to the eigenspaceof the the eigenvalue
� 22:828.

The Lorenzmanifold hasa number of astonishingproperties. Imaginethat the little blue
disk in Fig. 1 `grows' to becomethe Lorenz manifold W s(0), but without ever intersecting
the red unstable manifold W u(0). In other words, the Lorenz manifold stays `in between'
tra jectories on the Lorenz attractor, but `spirals' simultaneously into both wings of the
buttery . Now imagine how tra jectories on this manifold must be able to passfrom one
wing to the other. Any �nitely grown part of W s(0) is topologically still a two-dimensional
disk, but onewith a particularily intriguing embedding into R3. The geometryof W s(0) can
only truly be appreciatedif onecan draw an imageof it.

Someearly (non-numerical) work on the geometryof the Lorenzmanifold canbe found in
[Perell, 1979]. Pioneeringe�orts to visualizethe Lorenz systemare due to Stewart. Trajec-
tories that illustrate the (local) stablemanifold canbe found in [Thompson& Stewart, 1986,
Fig. 11.6],while [Stewart, 1986] is an extendedabstract of a movie that visualizesthe dynam-
ics and global bifurcations (as a function of R) of the Lorenzsystemwith computer graphics
in the three-dimensionalphasespace. The �rst, hand-drawn image of (the structure of)
the Lorenz manifold appeared in the book [Abraham & Shaw, 1985]. The �rst published
computer-generatedimageis that in [Guckenheimer& Worfolk, 1993]. Not in the least due
to its intriguing nature, the Lorenz manifold hasbecomea much-usedtest-caseexamplefor
evaluating algorithms that compute two-dimensional(un)stable manifolds of vector �elds.
For each of the methods discussedin this paper we present an imageof the computedLorenz
manifold that is always takenfrom a viewpoint alongthe line spannedby the vector (

p
3; 1; 0)

in the (x; y)-plane.

1.2 Stable and unstable manifolds

In order to explain the di�erent methods for computing two-dimensional(un)stable mani-
folds, we needto introducesomenotation. To keepthe exposition simple, we considerhere
the caseof a global (un)stable manifold of a hyperbolic saddlepoint x 0 2 Rn of (1). Further-
more, we present all theory and the di�erent methods for the caseof an unstable manifold.
This is not a restriction, becausea stablemanifold canbe computedasan unstablemanifold
when time is reversedin system(1).

Suppose now that f (x0) = 0 and for some 1 < k < n the Jacobian Df (x0) of f
at x0 has k eigenvalues with positive real parts and (n � k) eigenvalues with negative
real parts (counted with multiplicit y). The Stable and Unstable Manifold Theorem (see,
e.g., [Guckenheimer& Holmes,1986,Kuznetsov, 1998]) states that a local unstable mani-
fold W u

loc(x0) exists in a neighborhood of x0. Furthermore, W u
loc(x0) is as smooth as f and

tangent to the unstable (generalized)eigenspaceE u(x0) of Df (x0) at x0. This meansthat
we may de�ne the global unstable manifold W u(x0) as

W u(x0) = f x 2 Rn j lim
t !�1

� t (x) = x0g =
[

t> 0

� t (W u
loc(x0)) : (3)

Hence, W u(x0) is a k-dimensional (immersed) manifold, de�ned as the globalization of
W u

loc(x0) under the o w � t . Note that the local stable manifold W s
loc(x0) and the stable
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manifold W s(x0) are similarly related with respect to the reverseddirection of time, namely

W s(x0) = f x 2 Rn j lim
t !1

� t (x) = x0g =
[

t< 0

� t (W s
loc(x0)) : (4)

This indeed shows that it is su�cien t to consideronly the caseof an unstable manifold,
possiblyafter reversing time.

De�nition (3) already suggestsa method for computing W u(x0): take a small (k � 1)-
sphere(or other `outo w boundary' such asan ellipsoid) S� � W u

loc(x0) with radius � around
x0 and `grow' the manifold W u(x0) by evolving S� under the o w � t . As starting data, one
can take S� � E u(x0) or a higher-orderapproximation of W u

loc(x0).
In the special casek = 1 of computing a one-dimensionalmanifold, this method works

well, becauseit boils down to evolving two points at distance� from x 0 under the o w. This
can be donereliably by numerical integration of (1), sothat computing one-dimensionalun-
stablemanifolds is straightforward. The one-dimensionalmanifolds in Fig. 1 werecomputed
in this way.

However, the above method of evolving a (k � 1)-sphereS� with k � 2 under the o w
� t generallygivesvery poor results. This is sobecauseS� will typically deform very rapidly
under � t . In particular, it will stretch out along the strong unstable directions (if present).
Furthermore, S� is a continuous object that will have to be discretized by some mesh.
Any mesh on S� will deteriorate rapidly under the o w � t , so that it will not be a good
representation of W u(x0) as a k-dimensionalmanifold.

1.3 Di�eren t approac hes to computing W u(x0)

It is quite a challengeto compute a global unstable manifold W u(x0) of dimensionat least
two. Indeedsimple numerical integration of the o w is not su�cien t (except in very special
cases)| dedicated algorithms are neededfor this task. Before we describe somerecent
methods in more detail, we �rst explain the underlying approaches in generalterms. It is
useful to considerfor this purposedi�erent parametrizationsof W u(x0).

We concentrate in this survey on the �rst nontrivial casek = 2 of a two-dimensionalun-
stablemanifold. While all methodscouldbeusedin principle to computehigher-dimensional
manifolds, almost all implementations are for k = 2. Furthermore, visualizing higher-
dimensional manifolds remains a serious challenge. The di�erent methods use the idea
of growing W u(x0) from a local neighborhood of x0. They di�er in how they ensurethat a
good meshrepresenting W u(x0) is computedduring this growth process.

Consideras starting data a small smooth closedcurve S� � W u
loc(x0), also referredto as

a (topological) circle in what follows, of points that all lie within a distance� from x 0. (As
was mentioned, onecan take S� � E u(x0) if � is small enough.) The goal is to �nd a `nice'
parametrization of W u(x0) in terms of the starting data S� .

As we have seenabove, the parametrization

W u(x0) = f � t (S� )gt2
� (5)

is not practical. While the � t (S� ) are smooth closedcurves for all t, they are typically not
`nice' and `round'. Indeedthe curvature alongthesecurvestypically variesdramatically, and
they soon tend to look like very elongatedellipses.
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Figure 2: The Lorenz manifold computed with the method of
[Guckenheimer& Worfolk, 1993] up to geodesic distance 180; the computed approxi-
mate geodesiclevel setsare at increasingradial distancesfrom the origin with stepsof 5.0
in between,which is indicated by a color changefrom magenta (small) to blue (large).

In order to de�ne the parametrization of W u(x0) as a family of the nicest topological
circlespossible,recall that the geodesicdistancedg(x; y ) is de�ned as the arclength of the
shortest path in W u(x0) connectingx and y , called a geodesic. Considernow the geodesic
parametrization of W u(x0) given by

W u(x0) = f S� g� > 0 where S� := f x 2 W u(x0) j dg(x; x0) = � g : (6)

The geodesicparametrization (6) is entirely in terms of the geometryof W u(x0), and not in
termsof the dynamicson the manifold. SinceW u(x0) is a smooth manifold tangent to E u(x0)
at x0, there must be some� max > 0 sothat the geodesiclevel setsS� for 0 < � � � max are all
smooth closedcurveswithout self-intersection, that is, topological circles;see,for example,
[Spivak, 1979]. We alsorefer to geodesiclevel setsfor � � � max asgeodesiccircles. Up until
� max , the geodesicparametrization (6) is geometrically the nicest parametrization, because
its elements, the geodesiccircles,are the nicestpossibletopologicalcircleson W u(x0). (This
meanshere exactly that the metric is the identit y.) For the Lorenz manifold, apparently
� max = 1 . However, the caseof a �nite � max is possibleand it typically involves a non-
smooth geodesiccircle; see[Krauskopf & Osinga,2003] for details.

The idea of computing W u(x0) as a sequenceof geodesic circles goes back to
[Guckenheimer& Worfolk, 1993]. Starting with a small geodesiccircle (or ellipse)S� around
x0, they modify the vector �eld so that the component tangential to the last computed
geodesic level set is practically zero, retaining only the radial part. Then the o w of the
rescaledradial vector �eld is usedto evolve (a su�cien t number of points on) this geodesic
circle by integration over a suitably small and �xed integration time (now corresponding to
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geodesicdistance up to a rescalingof the radial part of the vector �eld). Figure 2 shows
36 approximate geodesiccircles of the Lorenz manifold computed with this method up to
geodesicdistance180. The output was producedin the DsTool [Back et al., 1992] software
environment; the manifold couldberenderedasa two-dimensionalsurfaceby post-processing
the data. When the vector �eld f is largely tangential to the geodesiccircles, the computa-
tion of that vector �eld's radial component becomesunstableunlessthe integration time � is
su�cien tly small (seethe ripples on the last few geodesiccirclesnear the helix at the middle
top of Fig. 2). This CFL-t ype stabilit y condition becomesincreasingly restrictive as the
angle between the tra jectories and geodesiccircles decreases.More generally, the method
from [Guckenheimer& Worfolk, 1993] can approximate stably only a part of the manifold,
on which the vector �eld remainstransverseto each geodesiccircle.

The method by [Krauskopf & Osinga,1999, Krauskopf & Osinga,2003], discussedin de-
tail in Sec.2, also computesW u(x0) as a sequenceof geodesiccircles,but doesnot rescale
the vector �eld. Instead, the idea is to �nd the next geodesiccircle in a local (and chang-
ing) coordinate system given by hyperplanesperpendicular to the present geodesiccircle.
Determined by certain accuracyparameters,a suitable number of meshpoints on the next
geodesic circle is computed by solving appropriate boundary value problems. During the
computation the interpolation error stays bounded,so that the overall quality of the mesh
is guaranteed.

A di�erent approach is to reparametrizetime so that the o w with respect to the new
time progresseswith the samespeed along all tra jectories through S� , meaning that the
samearclength is coveredper unit time along all tra jectories. One also speaksof arclength
integration. We then have the new parametrization of W u(x0) given by

W u(x0) = f A � g� > 0 with A � := f x 2 W u(x0) j da(x; x0) = � g ; (7)

whereda(x; y ) denotesthe arclength distancebetweentwo points x and y on the sametra-
jectory; we setda(x; y ) = 1 if x and y arenot on the sametra jectory. This parametrization
can be consideredasthe best in terms of dynamically de�ned topologicalcircleson W u(x0).

[Johnsonet al., 1997] use essentially this parametrization by tra jectory arclength, but
consider integration in the product of time and phasespace. They start with a uniform
meshon a �rst small circle A � 2 E u(x0) and then integrate at each step the present mesh
points up to a speci�ed arclength. This leadsto a new circle, on which a uniform meshis
then constructedby interpolation betweenthe integration points. Figure 3 shows the Lorenz
manifold computedwith this method up to an approximate arclength distanceof 200. The
method is quite fast sinceit involvesonly direct integration and redistribution of points by
interpolation. On the other hand, it is di�cult to control the interpolation error, which is
determinedby the (unknown) dynamicson W u(x0).

An altogetherdi�erent parametrization of W u(x0) is the dual parametrization to (5) and
(7) that consistsof the individual tra jectories through a �xed S� � E u(x0). It is formally
given as

W u(x0) = f Bpgp2 S� where Bp := f � t (p) j t 2 Rg: (8)

Notice that, in the caseof a two-dimensionalmanifold W u(x0) consideredhere,parametriza-
tion (8) is a one-parameterfamily of tra jectories,while (5) and (7) areone-parameterfamilies
of closedcurves.
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Figure 3: The Lorenz manifold computedwith the method of [Johnsonet al., 1997] up to a
total tra jectory arclength of about 200.

The method by Doedel,discussedin detail in Sec.3, computestwo-dimensional(un)stable
manifolds by following tra jectories Bp as a boundary value problem where the initial con-
dition p 2 S� is parametrized with one of the free continuation parameters. This method
is very accurateand exible by allowing for di�erent boundary conditions at the other end
point of the tra jectory Bp, which includesspecifying a �xed arclength L of the tra jectory.
During a computation, meshpoints are distributed along the tra jectories to maintain the
accuracyof the computation.

The method of [Henderson,2003], discussedin detail in Sec.4, alsoconsidersparametriza-
tion (8) of W u(x0) by orbits. However, the manifold is constructed directly as a two-
dimensionalobject by computing fat tra jectories. A fat tra jectory is a string of polyhedral
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patchesalong a tra jectory, wherethe sizeof each patch is given by local curvature informa-
tion. When a fat tra jectory reaches the prescribed total arclength L, the boundary of the
computedpart of the manifold is determined. Then a suitable starting point for the next fat
tra jectory is found and the computation continues. When no more possiblestarting points
exist, the computation stops.

The method of [Guckenheimer& Vladimirsky, 2004], discussedin detail in Sec.5, locally
models W u(x0) as the graph of a function g that satis�es a quasi-linearpartial di�erential
equation (PDE) expressingthe tangencyof the vector �eld f to the graph of g. The PDE
is discretizedin an Eulerian framework and the manifold is approximated by a triangulated
mesh. At each step one new point is added to the mesh, leading to a new simplex whose
other vertices are previously known meshpoints. An Ordered Upwind Method determines
where the next point/simplex is added and the ordering of new simplicesis basedon the
arclength of the tra jectories.

The method by [Dellnitz & Hohmann, 1996, Dellnitz & Hohmann, 1997], discussedin
detail in Sec.6, is complementary to the previous methods in that it computesan outer
approximation of the manifold by boxesof the samedimensionn as the phasespaceof (1).
This method usesthe time-� map of the o w � t for some�xed � . A subdivision algorithm
�rst �nds a covering of W u

loc(x0) with n-dimensionalboxesof suitably small diameter. This
local box covering is then globalizedin stepsby adding new boxes(of the samesmall size)
that are`hit' under the time-� map by the present collectionof boxes. The practical problem
is to reliably detect whenthe imageof onebox intersectsanother box (for example,by using
test points). If a-priori boundson the local growth rate of the vector �eld are known then
it is possibleto computea rigorous box covering of W u(x0); see[Junge,2000a].

In the following sectionswe present the di�erent algorithms in more detail, again illus-
trated with the computation of the Lorenz manifold W s(0).

2 Appro ximation by geodesic level sets

The method of [Krauskopf & Osinga,1999,Krauskopf & Osinga,2003] approximatesa global
(un)stablemanifold asa sequenceof geodesiccirclesof the parametrization (6). Only the case
of a two-dimensionalunstablemanifold of a saddlepoint in a three-dimensionalspaceis pre-
sented here. However, the method canbe formulated in terms of computing a k-dimensional
manifold of a vector �eld in Rn , and has been implemented to compute two-dimensional
(un)stable manifolds of saddle points and saddle periodic orbits in a phasespaceof any
dimension;seethe examplesin [Krauskopf & Osinga,1999, Krauskopf & Osinga,2003] and
also in [Osinga,2000, Osinga,2003]. Variants of this method exist to computeglobal mani-
folds of maps;see[Krauskopf & Osinga,1998a, Krauskopf & Osinga,1998b].

The method completely stepsaway from evolving an existing mesh. Instead, new mesh
points are computedby meansof solving appropriate boundary valueproblems;seeSec.2.1.
The boundary conditions predetermine where the new mesh points need to be added in
order to achieve a prescribed meshquality. This method is as independent of the dynamics
aspossibleand it grows the manifold asa sequenceof discretizedgeodesiccirclesuntil � max

is reached wherethe geodesiclevel setsare no longer smooth circles;seeSec.1.3.
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F r

r
Ci

qr (t r )

br (t r )

W s(0) \ F r

Figure 4: The boundaryvalueproblemformulated for a meshpoint r on the geodesiclevel set
Ci is solved by a family of tra jectories,starting at qr (t) on Ci and endingat br (t) in F r , that
is parametrizedby integration time t. There is a unique�rst orbit such that jj br (t r ) � r jj= � i .
The imageshows actual data for the Lorenz manifold W s(0) of Fig. 5 whereCi � S� i with
� i = 32:75 and � i = 4:0.

To be more speci�c, let M i denotea circular list of meshpoints from which a continuous
topologicalcircle Ci is formedby connectingneighboring points of M i by line segments. The
meshpoints in M i are computed to ensurethat Ci is a good approximation (according to
prespeci�ed accuray parameters)of an appropriate geodesiccircle S� i . The manifold W s(0)
is then approximated up to a prescribed geodesicdistanceL by the triangulation formed by
the total meshM = [ 0� i � l M i , wherel 2 N dependson L and the accuracyparameters.

The start data is a uniform meshM 0 on an initial small geodesiccircle S� 0 = S� � E u(x0)
at someprescribeddistance� from 0. The method then computesat each stepi a newcircular
list M i +1 that approximates the next level set S� i +1 . In other words, at every step a new
band is addedto W u(x0); the width of this band is determinedby the curvature of geodesics.
The method stopswhen the prespeci�ed �xed geodesicdistanceL from 0 is reached.

2.1 Finding a new poin t in M i +1

Let us consider the task of �nding M i +1 at someprescribed increment � i from a known
circular list M i representing S� i . The circular list M i +1 is constructedpointwise. Let r 2 M i

and considerthe (half )plane F r through r that is (approximately) perpendicular to Ci at r .
(In the implementation the normal to F r is de�ned as the averageof the two unit vectors
through r and its immediate left and right neighbors.) Then W u(x0) \ F r is a well-de�ned
one-dimensionalcurve locally near r , which is parametrized by the time it takes to reach
W u(x0) \ F r by integration from Ci . Points in W u(x0) \ F r can be found by solving the
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two-point boundary value problem

qr (t) 2 Ci ; (9)

br (t) := � t (cr (t)) 2 F r ; (10)

where the integration time t is a free parameter. The situation is shown in Fig. 4 with
actual data for the Lorenz manifold W s(0) presented in Sec.2.3. Note that for an unstable
manifold t � 0 and for a stable manifold t � 0.

The point br (t r ) 2 F r is uniquelyde�ned by the property that t r is the smallestintegration
time (in absolutevalue) for which jj br (t r ) � r jj= � i . If � i is small enoughthen br (t r ) exists
and can be found by continuation of the trivial solution br (0) = qr (0) = r for t = 0 while
checking for the �rst zeroof the test function

� i � jj br (t) � r jj : (11)

When the �rst zero is found then br (t r ) = br (t) is the candidate for a point in M i +1 ; see
Fig. 4.

2.2 Mesh adaptation

Onceall candidate points in M i +1 have beenfound, all for the same� i , then it is decided
whether the step size � i was appropriate. To this end, it is checked that the curvature
of (approximate) geodesicsthrough all points r 2 M i was not too large. This is done
with a criterion that wasoriginally introducedfor one-dimensionalglobal manifoldsof maps
[Hobson,1993]. Let � r denotethe anglebetweenthe line through r and br (t r ) and the line
through pr and r , where pr 2 M i � 1 is the associated point of M i � 1 on the approximate
geodesic. The step of geodesicdistance� i was acceptableif both

� r < � max ; and (12)

� i � � r < (� � )max (13)

hold for all r 2 M i . In this caseM i +1 is acceptedand step i is complete. If there is some
r 2 M i that fails either (12) or (13) then � i is halved and step i is repeated with this
smaller � i . Similarly, � i may be doubled if for every r 2 M i both � r and � i � � r are well
below the respective upper boundsin (12) or (13), say, below � min and (� � )min respectively.
The parameters� min , � max , (� � )min , and (� � )max implicitly determinethe meshadaptation
along geodesicsand are �xed by the userbeforea computation.

It is important to ensure that Ci +1 is also a good approximation of S� i +1 . In other
words, neighboring points of M i +1 may not be too closeor too far from each other. When
two neighboring points of M i lead to two neighboring points of M i +1 at more than the
prespeci�ed distance � F from each other, then a new point is added in between. This is
not done by interpolating between points of M i +1 but by applying step i of Sec.2.2 for
�nding a new point in M i +1 to the middle point on Ci . In other words, no interpolation is
ever performed betweenpoints that are more than distance � F apart. In order to ensure
proper order relations betweendirectly neighboring points of M i +1 a point is removed if two
neighboring points in M i +1 lie closertogether than a prespeci�ed distance� F .
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(a) (b)

(c) (d)

Figure 5: The Lorenz manifold computed with the method of Krauskopf & Osinga up to
geodesic distance 154.75. Panel (a) shows the entire manifold, panel (b) an enlargement
wherethe manifold is transparent, panel (c) a further enlargement near the Lorenzattractor
(in magenta) where only every secondband is shown, and panel (d) the computed mesh
when looking into the outer scroll.

The meshadaptation as decribed ensuresthat the overall error of a computation up to
a prescribed geodesicdistance L is bounded. This meansthat the computed pieceof the
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manifold lies in an "-neighborhood of W u(x0), provided the accuray parametersare chosen
small enough;see[Krauskopf & Osinga,2003] for the proof.

2.3 The Lorenz manifold appro ximated by geodesic circles

Figure 5 shows the Lorenz manifold W s(0) represented by a total of 75 bands and with
total geodesic distance 154.75. The manifold was computed starting with a mesh M 0 of
20 points on S� � E s(0) with � = 1:0. The computation was initiated with � 1 = 0:25
and the mesh was generated using the accuracy parameters � min = 0:3, � max = 0:4,
(� � )min = 0:1, (� � )max = 1:0, � F = 2:0, and � F = 0:67. The coloring illustrates the
geodesic distance from the origin, where blue is small, green is intermediate and red is
large. The manifold was renderedasa two-dimensionalsurfacewith the visualization pack-
ageGeomview [Phillips et al., 1993]; other illustrations of the Lorenzmanifold can be found
in [Krauskopf & Osinga,2003, Krauskopf & Osinga,2004, Osinga& Krauskopf, 2002] and
animations with [Krauskopf & Osinga,2003, Krauskopf & Osinga,2004].

Figure 5(a) shows the entire computed part of the Lorenz manifold from the common
viewpoint; notice the similarity with the geodesic level sets in Fig. 2. Figure 5(b) shows
an enlargement of the Lorenz manifold wherethe manifold is now transparent. This brings
out the detail of the manifold, in particular, the development of a pair of extra helices
that follow the main helix along the z-axis. Notice that points of the samecolor are on
the samegeodesiccircle, which shows that points on W s(0) that are closeto the origin in
Euclideandistanceneednot be closeto the origin in geodesicdistance. Figure 5(c) shows a
further enlargement near the Lorenz attractor, which is illustrated in magenta by plotting
the unstable manifold W u(0). In this image only every secondband is shown to obtain a
see-throughe�ect, showing clearly how the Lorenzmanifold `rolls' into the Lorenzattractor.

Figure 5(d) givesan impressionof the computedmeshwith an enlargement looking into
one of the outer scrolls. Geodesiccirclescan be seenas spiraling curves (betweenbandsof
the samecolor). The approximate geodesicsare the curvesthat point approximately radially
out in the image. They are perpendicular to the geodesiccircles,and locationswherepoints
wereaddedcanbeidenti�ed asstarting points of newapproximate geodesics.Notice that the
last six bandsare closertogether. The imageillustrates how the distancebetweengeodesic
circles is determined by the curvature along geodesics,while the meshdistribution on the
geodesiccircles is allowed to vary between� F = 0:67 and � F = 2:0.

3 BVP contin uation of tra jectories

It seemsvery natural to use parametrization (8) for de�ning a one-parameterfamily that
describesthe unstablemanifold W u(x0) of a saddleequilibrium x0 of (1). An approximation
to W u(x0) could then beattempted by simpleintegration of Eq. (1) for a su�cien t number of
initial conditionsthat lie on the circle (or ellipse)S� of small radius � in the stableeigenspace
E u(x0) centered at x0. However, as was already explained in Sec.1.3, this proceduredoes
not generally produce W u(x0) as a surface. The main task is to properly spacethe initial
conditionsaroundthe circle, sothat the result givesa reasonabledistribution of the computed
tra jectoriesalongthe stablemanifold. This is a major problem becausethe entire calculated
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tra jectory (e.g., of a �xed �nite length) dependendsvery sensitively on the initial condition.
The method of Doedelusesnumerical continuation to solve this problem. The basicidea

of continuation is to follow a (one-dimensional)branch of solutions that exists accordingto
the Implicit Function Theoremaround a regular root of a systemof m equationswith m + 1
unknowns. The stepsizein the continuation procedure(seeSec.3.1 for details) measuresthe
changeof the entire computed trajectory (and various parameters),and not just the change
in the initial condition. It is this key property of continuation that generally results in a
reasonabledistribution of tra jectoriesalong the stable manifold.

In this section we only considerthe computation of one-parameterfamilies of tra jecto-
ries, which together describe a two-dimensional(un)stable manifold of a �xed point. Most
existing continuation algorithms can handle the computation of such one-dimensionalfami-
lies (alsocalledsolution branches); see,for example,[Beyn et al., 2002,Doedelet al., 1991a,
Doedelet al., 1991b, Keller, 1977, Rheinboldt, 1986, Seydel,1995], and [Kuznetsov, 1998,
Chapter 10]. The continuation method described here was implemented in the continu-
ation package AUTO [Doedel,1981, Doedelet al., 1997, Doedelet al., 2000] by specifying
the respective driver �les.

Continuation algorithmshavealsobeendevelopedfor the higher-dimensionalcase;see,for
example,[Allgower & Georg,1996, Henderson,2002]. Hence,this method could be applied,
in principle, equally well to computemanifolds of dimensionlarger than two.

3.1 Pseudo-arclength contin uation

Let us begin with a discussionof somebasic notions of continuation. Consider the �nite-
dimensionalequation

F (X ) = 0; F : Rm+1 ! Rm ; (14)

whereF is assumedto be su�cien tly smooth. This equation has onemore variable than it
has equations. Given a solution X 0, one has, generically, a locally unique solution branch
that passesthrough X 0. To compute a next point, say, X 1, on this branch, one can use
Newton's method to solve the extendedsystem

F (X 1) = 0; (15)

(X 1 � X 0)� _X 0 = � s: (16)

Here _X 0 is the unit tangent to the path of solutionsat X 0, the symbol � denotestranspose,
and � s is a step size in the continuation procedure. The vector _X 0 is a null vector of
the m � (m + 1)-dimensional Jacobian matrix FX (X 0), and it can be computed at little
cost [Doedelet al., 1991a]. This continuation method is known as Keller's pseudo-arclength
method [Keller, 1977]. The sizeof the pseudo-arclengthstep � s is normally adapted along
the branch, depending, for example,on the convergencehistory of Newton's method. It is
very important to note that the stepsizeis measuredwith respect to all components of the
solution, and not just one.

The continuation procedureis well posednear a regular solution X 0, that is, if the null
spaceof FX (X 0) is one-dimensional.Namely, in this casethe Jacobianof the entire system
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(15){(16) at X 0, that is, the (m + 1) � (m + 1) matrix
�

FX (X 0)
_X �

0

�
(17)

is nonsingular. The Implicit Function Theoremthen guaranteesthat a locally uniquesolution
branch passesthrough X 0. This branch can be parametrized locally by � s. Moreover, for
� s su�cien tly small, and for su�cien tly accurateinitial approximation (for example,when
taking X (0)

1 = X 0 + � s _X 0), Newton's method for solving Eqs. (15){(16) converges.

3.2 Boundary value problem form ulation

When computing a branch of solutions to an ODE of the form (1), parametrizedby initial
conditions and the integration time T, one must keepin mind that (1) has in�nitely many
solutions and boundary or integral constraints must be imposed. Furthermore, the pseudo-
arclengthconstraint (16) is then typically given in functional form; moredetails canbe found
in [Doedelet al., 1991b]. This meansthat the possiblyunknown total integration time T is
embeddedin the equations. To this end, the vector �eld (1) is rescaledso that integration
always takes place over the interval [0; 1], and the actual integration time T appearsas a
parameter. Hence,in this context, Eqs. (15){(16) take the form

x0
1(t) = f̂

�
x1(t); � 1

�
; (18)

b(x1(0); x1(1); � 1) = 0; (19)
Z 1

0
q(x1(s); � 1) ds = 0; (20)

Z 1

0

�
x1(� ) � xp(� )

� � _xp(� ) d� + (� 1 � � 0)� _� 0 = � s; (21)

wherethe dimensionof � 1 must be chosenconsistently with the dimensionsof the boundary
conditions (19) and the integral constraints (20) in order to ensurea one-dimensionalfamily
of solutions. Again we stressthat the continuation stepsizeis for the entire solution X , and
not just for the parametervector � 1. Equations(15){(16) must besolvedfor X 1 = (x1(�); � 1);
given a previoussolution X 0 = (xp(�); � 0) of the ODE and the path tangent _X 0 = ( _xp(�); _� 0).
That is, in a function spacesetting, Eqs. (18){(20) correspond to the equation F (X ) = 0,
as in Eq. (14). Note that the dimension(m + 1) of X = (x(�); � ) may be much larger than
the dimensionn of the phasespaceof (1). In particular, � always contains the parameter
T, which may or may not vary during the continuation; seeSec.3.3 for speci�c examples.If
� = T then f̂

�
x1(t); � 1

�
= Tf

�
x1(t)

�
.

In each continuation step, Eqs. (18){(21) are solved by a numerical boundary value al-
gorithm. Here, the package AUTO [Doedel,1981, Doedelet al., 1997, Doedelet al., 2000]
is used,which usespiecewisepolynomial collocation with Gauss-Legendrecollocation points
(also called orthogonal collocation), similar to COLSYS with adaptive mesh selection
[Ascher et al., 1995, De Boor & Swartz, 1973, Russell& Christiansen,1978]. In combina-
tion with continuation, this allows the numerical solution of `di�cult' orbits. Moreover,
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for the caseof periodic solutions, AUTO determinesthe characteristic multipliers (or Flo-
quet multipliers) that determine asymptotic stabilit y and bifurcation properties, as a by-
product of the decomposition of the Jacobian of the boundary value collocation system
[Doedelet al., 1991b, Fairgrieve & Jepson,1991]; seealso [Lust, 2001].

3.3 BVP contin uation of the (un)stable manifold of an equilibrium

Consider now the situation that (1) has a saddle equilibrium x0 with a two-dimensional
unstable manifold, meaning that the Jacobian Df (x0) has exactly two eigenvalues � 1 and
� 2 with positive real part. Supposefurther that v1 and v2 are the associated (generalized)
eigenvectors. We are looking for solutionsof the system

x0(t) = Tf
�
x(t)

�
; (22)

x(0) = x0 + � (cos(� )v1 + sin(� )v2); (23)

which is a combination of Eqs. (18) and (19) with � = (� ; T). Note that in Eqs. (22){(23)
the continuation equation corresponding to Eq. (21) (or Eq. (16)) has beenomitted, even
though it is an essential part of the continuation procedure.The continuation equation will
alsonot be written explicitly in subsequent continuation systems.

If the eigenvalues� 1 and � 2 arereal, then it is advantageousto choosethe initial condition
on the ellipsethat is given by the ratio of the eigenvaluesas

x(0) = x0 + �
�

cos(� )
v1

j� 1j
+ sin(� )

v2

j� 2j

�
: (24)

In other words, in the continuation Eq. (23) is replacedby Eq. (24).
Obvious starting data for the system (22){(23) consist of a value of � (0 � � < 2� ),

T = 0, and x(t) = x0 + � (cos(� )v1 + sin(� )v2), that is, x(t) is constant. An actual tra jectory
for a speci�c value of � can now be obtained using continuation as well. While this may
seemsuperuous, it has the added bene�t that the output �les of this �rst step in AUTO
are then compatible with subsequent continuation steps. In this continuation step, system
(22){(23) is solved for X = (x(�); T), keepingthe angle� �xed. Here,T > 0 for an unstable
manifold and T < 0 for a stable manifold sincethen integration is backward (or negative)
in time.

Once a single orbit is obtained up to a desiredlength, de�ned by a suitable end-point
condition, then this orbit is continued numerically as a boundary value problem where the
initial condition on the small circle (or ellipse) is now a component of the continuation
variable. In this way, the family (8) of such orbits on (part of) the stable manifold W u(x0)
is approximated. The simplest way to do this is to �x T in the continuation system(22){
(23) after the �rst step and allow � , the angle of the starting point on S� to vary freely.
It is important to note that � is not used as the sole continuation parameter. Instead
each continuation step is taken in the full continuation variable X = (x(�); � ), so that the
continuation stepsizeincludesvariations alongthe entire orbit. Also, � is oneof the variables
solved for in each continuation step and it is not �xed a priori .

Insteadof keepingT �xed, thereareother ways to performthe continuation. For example,
onecan constrain the end point x(1) asonewishes.This is doneby adding to system(22){
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Figure 6: Continued tra jectorieson W s(0) near the origin starting from the ellipse(24) with
� = 5:0, � 1 = � 22:828 and � 2 = � 2:667; the coloring is according to integration time T,
wherered indicates faster and greenslower o w.

(23) the equation

g(x(1); � ; T) � � = 0: (25)

Here g is an appropriate functional, chosento control the end point in a desirablemanner,
for example,by requiring onecoordinate to have a particular �xed value. The continuation
variable can now be taken as X = (x(�); � ; T), while � is kept �xed.

Another possibility is to imposean integral constraint along the orbit, namely adding to
(22){(23) the equation

Z 1

0
h(x(s); � ; T) ds � L = 0: (26)

Now h is an appropriate functional, chosento control the orbit in a desirablemanner. The
continuation variable can again be taken as X = (x(�); � ; T), but now keepingL �xed. A
particularly useful choice is h(x; �; T) = Tjj f

�
x; �

�
jj , which results in the total arclength of

the orbit being kept �xed during the continuation. Finally, it is entirely possibleto usea
combination of end-point conditions and integral constraints, but this will not be usedhere.
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(a) (b)

(c) (d)

Figure 7: The Lorenz manifold computed with the continuation method of Doedel. Panels
(a), (b) and (c) show the manifold wherethe arclengthof the tra jectoriesis �xed at L = 250.
In panel (a) the coloring indicates the arclength along tra jectoriesand in panels(b) and (c)
the coloring is according to the total integration time T of tra jectories; the strong stable
manifold lies inside the red region. Panels (a) and (c) show all tra jectories, while panels
(b) shows only every fourth tra jectory asa tube. Panel (d) demonstratethat only a part of
interest of the stable manifold may be computed,such asa part of the main scroll; this was
doneby �xing x = � 25 at the end point of tra jectories.
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3.4 The Lorenz manifold as a family of tra jectories

Figure 6 shows an enlargement near the origin of the orbits that were continued on the
Lorenz manifold W s(0) (for negative T). The angle � is allowed to vary from 0 to 2� , so
that the initial condition variesalong the ellipsein the middle of the image,which is de�ned
by (24) with � = 5:0, � 1 = � 22:828 and � 1 = � 2:667. All orbits have the samearclength
and the coloring is in terms of the total integration time T along each tra jectory. In other
words, the coloring givesan indication of the speedof the o w along tra jectories,wherered
is fast and green is slower. The o w is fastest along the strong stable manifold, which is
located in the middle of the red region. Note that the disctribution of points is much denser
near the top and bottom of the ellipse, that is, near the invariant z-axis, which ensuresa
good distribution of orbits over the Lorenz manifold W s(0).

Figure 7(a){(c) shows the Lorenz manifold W s(0) covered by 2284 tra jectories of ar-
clength 250,wherethe ellipseof initial conditions is asin Fig. 6. The number of meshpoints
along each tra jectory was NTST = 75, with NCOL = 4 collocation points in each meshin-
terval. Figure 7(a) shows the entire computedpart of the Lorenzmanifold from the common
viewpoint. The coloring changesfrom blue to red accordingto the meshpoint number along
a tra jectory, which givesan impressionof the arclength of tra jectories. Figures7(b) and (c)
show enlargements wherethe coloring shows the total integration time T along tra jectories.
As in Fig. 6, this indicates the speedof the o w; the strong stable manifold is located in
the red region of fast o w. In Fig. 7(b) every fourth tra jectory is renderedas a thin tube.
This results in a better senseof depth so that an impressionis given of how tra jectories lie
in phasespaceto form W s(0). Figure 7(c) is an enlargement of Fig. 7(a) (though with a
di�erent color scheme)showing how the manifold forms a scroll.

Figure 7(d) illustrates the exibilit y of the method by showing part of the Lorenzmanifold
computed by numerical continuation of solutions to the boundary value problem (22){(23)
and (25) for the choiceg(x; �; T) = x. This results in the x-coordinate of the end point x(1)
being kept �xed during the continuation, and it was set to x = � 25 in the computation.
For an appropriate choiceof � , for which sometra jectoriesintersect this planeseveral times,
the continuation procedurethen naturally leadsto non-monotonousvariation of � , thereby
allowing the computation of a scroll-like structure on the stable manifold. In Fig. 7(d) the
origin is the point on the right from which all tra jectoriesemerge.

4 Computation of fat tra jectories

The method of [Henderson,2003] computesa compact pieceof a k-dimensional invariant
manifold by covering it with k-dimensionalsphericalballs in the tangent space,centered at
a set of well-distributed points. This set is found by computing so-calledfat tra jectories,
which are tra jectories augmented with tangent and curvature information at each point.
The centers of the balls are points on the fat tra jectory, and the radius is determinedby the
curvature.

For the implemented caseof computing a two-dimensionalunstable manifold W u(x0) of
a saddlepoint of (1), the method starts with a small circle S� � E u(x0) and at every step
circular disks are added along a fat tra jectory with a �xed total arclength (from x 0) of L.
Initially all fat tra jectories start on S� , but at later stagesfat tra jectories begin at points
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interpolated where two fat tra jectories move too far from each other. The method stops
when W u(x0) hasbeencoveredup to the prescribed arclength L.

4.1 Fat tra jectories on the global stable manifold

The method requires a basis for the tangent spaceand the curvatures in that basis to
construct the disks. As was mentioned in the introduction, invariant manifolds are not
de�ned locally, so that there is no local way of determining the tangent spaceor curvature
for a given a point on the invariant manifold. This information is known at points on
the initial curve S� � E u(x0), for example, the tangent to S� is known, and if the o w is
transverseto the initial curve S� , f can be usedas the secondtangent. The circle S� (or
possibly an ellipse) may be chosento be transverseto the o w for su�cien tly small � . The
curvature information can be obtained using the secondderivative tensor.

The tangent and curvature can be `transported' over W u(x0) by deriving and solving
evolution equationsfor them alonga tra jectory. To this end, onewrites the parametrization
(5) in the form

x(t; � ) = c(� ) +
Z t

0
f (x(s; � ))ds; (27)

wherec(� ) parametrizesS� with the one-dimensionalparameter � . (An exampleof such a
parametrization is (24).) Then the tangent spaceat x(t; � ) is spannedby x � and x t = f ,
and the corresponding curvatures are given by the secondderivativesx � � , x t� = f x x � and
x tt = f x f . Evolution equationsfor the unknown quantities can be found by di�erentiating
(27)

d
dt

x = f ; (28)

d
dt

x � = f x x � ; (29)

d
dt

x � � = f x x � � + f xx x � x � : (30)

Note that, even if x � is orthogonal to f at the initial point, there is no reasonto expect the
basis to remain orthogonal. In [Henderson,2003], equationsare derived for the evolution
of a local parametrization which does remain orthonormal and has minimal changein the
basis along the tra jectory. (This is analogousto �nding Riemannian normal coordinates
in gravitation, where tra jectories play the role of geodesics[Misner et al., 1970].) If the
tangents in the local parametrization are u0 and u1, they evolve accordingto

d
dt

u0 = f x u0 � uT
0 f x u0 u0 � uT

1 f x u0 u1 ; (31)

d
dt

u1 = f x u1 � uT
0 f x u1 u0 � uT

1 f x u1 u1 : (32)
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t=T

Figure 8: Two adjacent fat tra jectoriesstarting from S� . A newfat tra jectory is started from
the point wherethe two fat tra jectoriesseparate.This point can be found by interpolation
betweentwo suitable meshpoints, which is indicated by the greenlines.

4.2 In terp olation poin ts on the invarian t manifold

The method starts with a set of well-distributed points on the initial curve S� , which can
be found using the algorithm described in [Henderson,2002]. At each such point on S�

an orthonormal basis for the invariant manifold and secondderivatives of the manifold in
that basisare computed,and usedas initial conditions for �nding a set of disks along a fat
tra jectory. Becausetra jectoriesmay move apart from each other, thesedisks will generally
not cover W u(x0); seeFig. 8. This meansthat additional fat tra jectories must be started
at suitable points until W u(x0) is covered. In order to generatea well-spacedset of points
on W u(x0), one choosesa starting point from the boundary of the computed part of the
manifold.

The method in [Henderson,2002] represents the boundary of the union of disks f D i g
using polygonsrelated to the Voronoi regionsof the centers of the disks. A disk D i consists
of a center x(t i ; � i ) (a point on a fat tra jectory), the orthonormal basisfor the tangent space
of the manifold u0(t i ; � i ) and u1(t i ; � i ), a radius Ri , and polygon Pi . The polygon Pi is
represented by a list of vertices in the tangent spaceand edgesjoining them (this actually
works in arbitrary dimensions).The polygonsare constructedin such a way that each edge
of Pi which crossesthe boundary of D i correspondsto a neighboring disk D j . The situation
is sketched in Fig. 8.

Supposethat part of W u(x0) is represented this way, and a new disk D i is to be added.
Pi is initially a squarecentered at the origin with sides2Ri , and for each disk D j which
intersectsthe new disk D i complementary half spacesare subtracted from Pi and Pj . The
projection of D j into the tangent spaceat x i is approximated by a disk of radius Rj centered
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at the projection of x j . If Ri and Rj are small enoughso that the distance between the
tangent spaceand the manifold is small (this depends on the curvature of W u(x0)), then
this is a good approximation. This pair of disks in the tangent spaceat x i de�nes a line
containing the intersection of the circles bounding the disks, and one subtracts from Pi a
half spaceboundedby this line. The sameapproach is usedto update Pj by projecting x i

into the tangent spaceat x j .
With thesepolygonsa point on the boundary of the union caneasilybe found. Any point

on � D i \ Pi is near the boundary of the union (the distance to the boundary is controlled
by the distancebetweenthe tangent spaceand the manifold at the radius). Points on the
boundary where two disks meet correspond to points wherean edgeof Pi crosses� D i (the
point obtained is in the tangent spaceof the manifold and must be projected onto the
manifold).

If one considersthe part of the invariant manifold that is not yet covered (that is, the
exterior of the union of neighborhoods, t < T), one can de�ne something resembling a
constrainedminimization problem (it lacks a global objective function) which looks for a
point in this region that lies furthest back in time under the o w. With a mild assumption
about the shape of the region (it must be a topological ball), such a minimal point must
exist. It must lie on the boundary of the regionat the intersectionof two disks. This point is
a `minimum' if the o w vector extendedbackwards intersectsthe interior of the edgejoining
the centers of the intersecting disks. (This is, in fact, Guckenheimer and Vladimirksy's
upwinding criterion; seeSec.5.) One can easily �nd candidatepoints on the boundary from
the edgesof the polygons,and checking the upwinding criterion is a matter of computing a
projection. One can then either interpolate tangents and curvatures from the disks' centers
(the method used in the computations shown in Fig. 9) or use a homotopy (as Doedel
usesin AUTO [Doedel,1981, Doedelet al., 1997, Doedelet al., 2000]) to move from the fat
tra jectory from S� through the center of one of the disks to the fat tra jectory which starts
on S� and passesunderneaththe interpolation point.

This interpolation to �nd newstarting points for fat tra jectoriescompletesthe algorithm.
It computesa covering of the manifold W u(x0) with disks centered at well-spacedpoints.
Provided the disks are su�cien tly small comparedto the curvature, the algorithm is guar-
anteed to terminate, and all points lie on tra jectories that originate on the initial curve S�

or at points interpolated betweennearby tra jectories.
The fat tra jectory, with its string of disksand polygons,is integrated until a prespeci�ed

total arclength L is reached. This is repeated for all the points on the initial curve. (The
total integration time T of fat tra jectoriesvarieswith the initial condition.)
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(a) (b)

(c) (d)

Figure 9: The Lorenz manifold computed with the method of Hendersonup to a total
tra jectory arclength of 250. Panel (a) shows a view of the entire manifold, panel (b) a
transparent enlargement near the main scroll, panel (c) shows the part of the manifold for
x < 0 together with the Lorenz attractor and the one-dimensionalstable manifolds of the
two other equilibria, and panel (d) givesan impressionof the computedmesh.
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4.3 The Lorenz manifold covered by fat tra jectories

Figure 9 shows the Lorenz manifold W s(0) computed (using integration backward in time)
up to a total tra jectory arclength of 250. The step was controlled so that the distance
between the tangent spaceand W u(x0) over each disk was lessthan 0.5. The scaledtime
step along tra jectorieswas 0.01 (many more than one time step is taken betweensucessive
points on a fat tra jectory), and no radius is greaterthan 2.0. The result wasa total of 221,210
disks. Figure 9(a) shows the entire computedpart of the Lorenzmanifold from the common
viewpoint. Figure 9(b) shows an enlargement of the Lorenzmanifold near the central region
wherethe manifold is now transparent. Notice the di�erent `sheets'of manifold in the scroll
and the extra helicesforming around the z-axis. This complicated structure of the Lorenz
manifold is further illustrated in Fig. 9(c) where only the half of W s(0) with negative x-
coordinate is shown. The intersection curves of the manifold with the plane f x = 0g are
shown in white. Also shown is the one-dimensionalunstable manifold W u(0) (red curve)
accumulating on the the Lorenz attractor (yellow) and the stable manifolds (blue curves)of
the other two equilibria.

Figure 9(d) gives an impression of the computed mesh. The fat tra jectories are the
white curvesand they are surroundedby the polygonsthat make up the Lorenz manifold.
Clearly visible are points wherenew fat tra jectoriesare started from interpolated data. The
boundary of the manifold at termination simply consistsof the disks that are distance L
from x0 (measuredalong tra jectories).

5 PDE form ulation

Another method for approximating invariant manifolds of hyperbolic equilibria was intro-
ducedby [Guckenheimer& Vladimirsky, 2004]. Their approach locally modelsa codimension-
one invariant manifold as the graph of a function g satisfying a quasi-linearPDE that ex-
pressesthe tangencyof the vector �eld f of (1) to the graphof g. The PDE is then discretized
in an Eulerian framework and the manifold is approximated by a triangulated mesh. We
denoteby M the triangulated approximation of the `known' part of the manifold. It can be
extendedby adding simplicesat the current polygonal boundary @M in a locally-outward
direction in the tangent plane. The discretizedversionof the PDE is then solved to obtain
the correct slope for the newly addedsimplices. To avoid solving the discretizedequations
simultaneously, an Ordered Upwind Method (OUM) is used to decouplethe system: the
causality is ensuredby ordering the addition/recomputation of new simplicesbasedon the
lengths � of the vector �eld's tra jectories.

Two key ideasprovide for the method's e�ciency:

1. The useof Eulerian discretizationensuresthat `geometricsti�ness', a high non-uniformity
of separationrates for nearby tra jectorieson di�erent parts of the manifold, doesnot
a�ect the quality of the produced approximation: new simplicesconstructed at the
current boundary @M are asregular as is compatible with the previously constructed
mesh.

2. SinceOUM is non-iterative, the PDE-solving step of the method is quite fast.
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5.1 Tangency condition

The method is explainedherefor a two-dimensionalmanifold W u(x0) of a saddlepoint x0 in
R3; see[Guckenheimer& Vladimirsky, 2004] for moredetails. Let (u ; g(u)) = (u1; u2; g(u1; u2))
bea local parametrizationof the manifold of (1). Then the vector �eld f shouldbetangential
to the graph of g(u1; u2), that is,

�
@

@u1
g(u1; u2);

@
@u2

g(u1; u2); � 1
�

� f (u1; u2; g(u1; u2)) = 0: (33)

The above �rst-order quasi-linearPDE canbesolved to `grow' the manifold in steps,because
the Dirichlet boundarycondition is speci�ed on the boundary@M of the pieceof the manifold
computed in previous steps. The initial boundary is chosenby discretizing a small circle
or ellipse S� � E u(x0) that is transverseto f , so that the vector �eld is outward pointing
everywhere.

Unlike a generalquasi-linearPDE, Eq. (33) always hasa smooth solution as long as the
chosenparameterization remains valid. Thus, switching to local coordinates when solving
the PDE avoids checking the continued validit y of the parameterization.

In [Guckenheimer& Vladimirsky, 2004] the PDE formulation (33) is extendedto approx-
imate two-dimensionalmanifolds in Rn . A similar characterization can be usedfor general
k� dimensional invariant manifolds in Rn , but the current numerical implementation relies
on k = 2.

The PDE approach for characterizing invariant surfacesgoesback to at least the 1960s.
The existenceand smoothnessof solutions for equationsequivalent to (33) were the sub-
jects of Sacker's analytical perturbation theory [Sacker, 1965] and later served asa basisfor
several numerical methods, for example, those in [Dieci & Lorenz, 1995,Dieci et al., 1991,
Edoh et al., 1995]. However, all this work was done for the computation of invariant tori.
Therearetwo very important distinctions betweenthe PDE methodsfor tori and the method
presented in this section:

1. Theseprior methods assumethe existenceof a coordinate systemin which the invari-
ant torus is indeed globally a graph of a function g : Tk 7! Rn� k . This implies the
availabilit y of a global mesh,on which the PDE canbe solved. For invariant manifolds
of hyperbolic equilibria such a meshis not available a priori and hasto be constructed
in the processof `growing' the approximation M .

2. For the invariant tori computations,the solution function g hasperiodic boundary con-
ditions; hence,the discretizedequationsare inherently coupledand have to be solved
simultaneously.
For the approximation of W u(x0) all characteristics of the PDE start at the initial
boundary (chosenin E u(x0)) and run `outward'. Knowledgeof the direction of infor-
mation o w can be usedto decouplethe discretizedsystem,resulting in a much faster
computational method.

5.2 Eulerian discretization

To enable decoupling of the discretized system, our discretization of Eq. (33) at a `new'
meshpoint y hasto be `upwinding', i.e. it shoulduseonly previously-computedmeshpoints
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y 1

y 2

ŷ

y = ŷ + � w

Figure 10: Geometric interpretation of Eq. (34). The search spacefor y is the normal
subspace,here corresponding to the line spannedby w. Here y 1 and y 2 are points in
AcceptedFront, while ŷ is a Considered point.

straddling y 's approximate tra jectory. For a two-dimensional invariant manifold in R3,
let G(u1; u2) be a piecewise-linearnumerical approximation of the local parameterization
g(u1; u2). Consider a simplex yy 1y 2, where y

�

= (ui
1; ui

2; G(ui
1; ui

2)) = (u i ; G(u i )) and
y = (u1; u2; G(u1; u2)) = (u ; G(u)). Supposethat the vertices y 1 and y 2 are two adjacent
meshpoints on the discretization of the current manifold boundary, called AcceptedFront
(thus, G(u 1) and G(u 2) are known and can be usedin computing G(u)). If u is chosenso
that the simplexuu 1u 2 is well-conditioned, then y = (u; G(u)) can be determinedfrom the
PDE. De�ne the unit vectors P � = u � u i

ku � u i k and let P be the squareinvertible matrix with
the P � 's as its rows. The directional derivative of G in the direction P � can be computedas
vi (u ) = (G(u) � G(u i )) =ku � u i k, for i = 1; 2. Therefore,r g(u) � r G(u) = P � 1v, where

v =
�

v1

v2

�
. This yields the discretizedversionof Eq. (33) as

�
P � 1v(u )

�
1

f 1(u ; G(u)) +
�
P � 1v(u )

�
2

f 2(u ; G(u )) = f 3(u ; G(u )): (34)

This nonlinear equation can be solved for G(u) by the Newton-Raphsonmethod or any
other robust zero-solver. In addition, it has an especially simple geometric interpretation
if the local coordinates are chosenso that G(u 1) = G(u 2) = 0. Namely, we reduce the
problem to �nding the correct `tilt' of the simplexyy 1y 2 with respect to the simplex ŷ y 1y 2

where ŷ = (u ; 0) is a point of the Considered front. Hence,solving Eq. (34) is equivalent
to �nding � 2 R such that f (ŷ + � w ) lies in the plane de�ned by y 1, y 2, and y = ŷ +
� w , where w is the unit vector normal to ŷ y 1y 2; seeFig. 10. A similar discretization
and geometric interpretation can be derived for the general caseof k � 2 and n � 3
[Guckenheimer& Vladimirsky, 2004].

The describeddiscretizationprocedureis similar in spirit to an implicit Euler's method for
solving initial value problemssincey 1 and y 2 are assumedto be known and the vector �eld
is computed at the to-be-determinedpoint y . In solving �rst-order PDEs, a fundamental
condition for the numerical stabilit y requiresthat the mathematical domain of dependence
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Figure 11: An acceptable(a) and an unacceptable(b) approximation of f (y ); The range
of upwinding directions is shown by dotted lines; the local linear approximation to the
tra jectory is shown by a dashedline; ~y is its intersection with the line y

�

y
�

. In the second
casethe upwinding criterion is not satis�ed and the update for y shouldbe computedusing
another segment of AcceptedFront.

should be included in the numerical domain of dependence. Since the characteristics of
PDE (33) coincidewith the tra jectoriesof the vector �eld, G(u ) should be computedusing
the triangle through which the corresponding (approximate) tra jectory runs. Thus, having
computed y = (u ; G(u)) by (34) using two adjacent mesh points y

�

and y
�

, we need to
verify an additional upwinding condition: the linear approximation to the tra jectory of y
should intersect the line y

�

y
�

at a point ~y = (~u ; G(~u)) that lies betweeny
�

and y
�

; seeFig.
11. An equivalent formulation is that f (y ) should point from the newly computedsimplex
yy

�

y
�

.
Algebraically, if y solves (34), then f (y ) = � 1(y � y

�

) + � 2(y � y
�

); thus, the upwind-
ing criterion above simply requires � 1; � 2 � 0. In this casethe discretization is locally
second-orderaccurate and the arclength �( y ) of the tra jectory up to the point y can be
approximated as

�( y ) � ky � ~yk + �( ~y) �
kf (y )k
� 1 + � 2

+ � 1�( y
�

) + � 2�( y
�

) � da(0; y ): (35)
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Numerical evidenceindicates that the resulting method is globally �rst-order accurate
[Guckenheimer& Vladimirsky, 2004].

5.3 Ordered Up wind Metho d

Ordered Upwind Methods (OUMs) were originally introduced for static Hamilton-Jacobi-
Bellman PDEs [Sethian & Vladimirsky, 2003]. In [Guckenheimer& Vladimirsky, 2004] the
sameideaof space-marchingfor boundary valueproblemsis usedto solve Eq. (33). All mesh
points are divided into those that are Accepted, that is, already �xed as belonging to the
approximation M , and thoseConsidered, which are in a tentativ e position adjacent to the
current polygonal manifold boundary @M , called the AcceptedFront. A tentativ e position
canbecomputedfor each Consideredmeshpoint y under the assumptionthat its tra jectory
intersects @M in someneighborhood N (y) of that point. In other words, y is updated
by solving Eq. (34) for a `virtual simplex' yy

�

y
�

such that y
�

y
�

2 @M
T

N (y) and the
upwinding criterion is satis�ed. All Considered points are sorted basedon the approximate
tra jectory arclengths�( y ) de�ned by (35). The method starts with @M discretizinga small
ellipse in E u(x 0). That initial boundary is surrounded by a single `layer' of Considered
meshpoints (also in E u(x 0)).

A typical step of the algorithm consistsof picking the Considered point ŷ with the
smallest � and constructing from it an Accepted point �y as was described in Sec. 5.2.
This operation modi�es @M ( �y is included, and the meshpoints that are no longer on the
boundaryareremoved) and causesa possiblerecomputationof all the not-yet-Acceptedmesh
points near �y . If y

�

is adjacent to �y and y
�

�y is on the boundary, then the meshis locally
extendedby adding a new Considered meshpoint y connectedto y

�

�y in a tangent plane.
To maintain good aspect ratios of newly-createdsimplices,the current implementation relies
on an `advancing front mesh generation' method similar to [Peraire et al., 1999]. Other
local mesh-extensionstrategiescan be implemented similarly to methods in [Rebay, 1993]or
[Henderson,2002].

The vector �eld near @M determinesthe order in which the correct `tilts' for tentativ e
simplex-patchesare computedand the Consideredmeshpoints are Accepted. This ordering
has the e�ect of reducing the approximation error (since a mesh point y �rst computed
from a relatively far part of N (y ) is likely to be recomputedbefore it gets Accepted). The
default stopping criterion is to enforce�( �y ) � L, sothat the algorithm terminateswhen the
maximal approximate arclength L is reached. Other stopping criteria (for example,based
on Euclideanor geodesicdistanceor the maximum number of simplices)canbe usedaswell.
Current algorithmic parametersincludeL, the radiusRN of the neighborhood N (y), and the
desiredsimplex size�. (The simplex sizeis �xed in the present implementation; it could be
adapted accordingto curvature information.) As in the original OUMs, the computational
complexity of the algorithm is O(M logM ), where M = O(L 2=� 2) is the total number of
meshpoints and the (logM ) factor results from the necessity to maintain a sorted list of
Considered mesh points. A detailed discussionof the algorithmic issuescan be found in
[Guckenheimer& Vladimirsky, 2004].
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(a) (b)

(c) (d)

Figure 12: The Lorenz manifold computed with the method of Guckenheimer and
Vladimirsky up to a total tra jectory arclength of about 174. Panel (a) shows a view of
the entire manifold, panel (b) an enlargement near the main scroll where the manifold is
shown transparent, panel (c) shows how the manifold interacts with the Lorenz attractor,
and panel (d) givesan impressionof the computedmesh.
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5.4 The Lorenz manifold computed with the PDE form ulation

Figure 12 shows the Lorenz manifold W s(0) computed up to an approximate total ar-
clength of L = 174. The computation was started from S� � E s(0) with � = 2:0,
� = 0:6 and RN = 4�, which resulted in the total of 271469mesh points. The color-
ing shows arclength along tra jectories where blue is small and red is large. The manifold
was renderedas a two-dimensionalsurfacewith Ma tlab ; other illustrations can be found
in [Guckenheimer& Vladimirsky, 2004] and for animations see[Vladimirsky, 2004].

Figure 12(a) shows the entire computed part of the Lorenz manifold from the common
viewpoint. Figure 12(b) is an enlargement near the central scrollswherethe manifold is now
shown transparent. Clearly visible aretwo secondaryspiralsforming nearthe positivez-axis.
The coloring is such that points of the samecolor are equally far away from the origin in
arclengthalongtra jectories. Figure 12(c) is a further enlargement nearthe unstablemanifold
W u(0) accumulating on the Lorenz attractor. This clearly shows how the Lorenz manifold
`rolls' into both wings of the Lorenz attractor, creating di�erent sheetsthat do not actually
intersect the shown tra jectoriesrepresenting the unstable manifold W u(0).

Figure 12(d) givesan enlargedimpressionof the computedmeshlooking into oneof the
outer scrolls. The simplicesof the meshare su�cien tly uniform in spite of the complicated
geometryof the manifold they represent. The red boundary of the computedmanifold is not
a smooth curve, becauseit is formed simply by the last simplicesthat were addedlocally.

6 Box covering

In contrast to the techniques described so far, the method of [Dellnitz & Hohmann, 1996,
Dellnitz & Hohmann, 1997] presented in this section approximates invariant manifolds by
objects of the samedimension as the underlying phasespace. It �rst producesan outer
covering of a local unstable manifold by a �nite collection of sets. This covering is then
`grown' in order to cover larger parts of the manifold analogouslyto what is described in
Sec.s2 and 5. In combination with set-oriented multilevel techniques for the computa-
tion of invariant sets, such as periodic orbits, attractors and generalchain recurrent sets,
the technique allows, in principle, for the computation of manifolds of arbitrary dimension,
where the numerical e�ort is essentially determined by the dimensionof the manifold. In
combination with rigorous techniques for the implementation of this approach, it is pos-
sible to compute rigorous coverings of the consideredobject. For a more detailed expo-
sition of the general method see[Dellnitz & Hohmann, 1996, Dellnitz & Hohmann, 1997,
Dellnitz et al., 2001, Dellnitz & Junge,2002]. The algorithm is implemented in the software
packageGAIO [Dellnitz et al., 2001].

6.1 The box covering algorithm

The box covering algorithm appliesto a discrete-timedynamical system,that is, to a di�eo-
morphismD. In the context of approximating global manifolds, it cancomputethe unstable
manifold of an (unstable) invariant set of D in a compact region of interest Q. In this
section,we explain how this method can be usedfor the computation of a two-dimensional
(un)stable manifold of a saddlex0 in R3.
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Here, the di�eomorphism D : R3 ! R3 is given by the time-� map of the vector �eld
(1). For an unstable manifold � > 0, while for a stable manifold � < 0 to account for
reversing time. Numerically, the map D may be realized by classicalone-stepintegration
schemes. Sincethe algorithm involves integration over short time intervals only, typically
the requirements in terms of accuracyor preservation of structures of the underlying vector
�eld f are rather mild. The di�eomorphism D then has a hyperbolic saddle �xed point
�x = x0 and, in the case� < 0, �x has a two-dimensionalunstable manifold W u( �x), which is
identical to the stable manifold of x0.

The idea of the algorithm is as follows. Imagine a �nite partition P of Q. The method
�rst �nds a (small) collection C0 � P that covers the local unstable manifold W u

loc( �x). This
local covering of W u( �x) is extended in steps, where in each step the sets in the current
collection Ck are mapped forward under D. All setsin P that have an intersectionwith the
imagesof Ck are addedto the current collection of sets,yielding Ck+1 .

More formally, let P0; P1; : : : be a nestedsequenceof successively �ner partitions of Q:
We take P0 = f Qg and each element P 2 P`+1 is contained in an element P 0 2 P` and
diam(P) �  diam(P0) for some�xed number 0 <  < 1.

The algorithm consistsof two main steps:

1. Initialization: Compute an initial covering C(k)
0 � P`+ k of the local unstable mani-

fold W u
loc( �x) of �x. (Here the index k indicates the �neness of the initial partition.)

This can be achieved by applying a subdivision algorithm for the computation of rel-
ative global attractors to the element P 2 P` containing �x for somesuitable `; see
[Dellnitz & Hohmann, 1996].

2. Growth: From the collection C(k)
j the next collection C(k)

j +1 is obtained by setting

C(k)
j +1 = f P 2 P`+ k : D( eP) \ P 6= ; for someset eP 2 C(k)

j g:

This step is repeated until no more setsare added to the current collection, that is,
until C(k)

j = C(k)
j +1 .

We can show that this method convergesto a certain subsetof W u( �x) in Q. Namely, let
W0 = W u

loc( �x) \ P, whereP is the element in P` containing �x and de�ne

Wj +1 = D(Wj ) \ Q; j = 0; 1; 2; : : : :

Then we have the following convergenceresult (see[Dellnitz & Hohmann, 1996]):

1. the setsC(k)
j = [ P 2C( k )

j
P are coveringsof Wj for all j; k = 0; 1; : : :;

2. for �xed j and k ! 1 , the covering C(k)
j convergesto Wj in Hausdor� distance.

In general,one cannot guarantee that the algorithm leads to an approximation of the
entire set W u( �x) \ Q. This is due to the fact that parts of W u( �x) that do not lie in Q may
map into Q. In this case,the method will indeednot cover all of W u( �x) \ Q.

Under certain hyperbolicity assumptionson W u( �x) it is possibleto obtain statements
about the speedof convergencein terms of how the Hausdor� distancebetweenthe covering
and the approximated subsetof W u( �x) dependson the diameter of the setsin the covering
collection; see[Dellnitz & Junge,2002] for details.
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Figure 13: Coverings of the Lorenz manifold during the �rst three growth stepsare shown
in panels(a){(c), wherethe covering of the previousstep (the initialization box in the case
of (a)) is shown in yellow.

6.2 Realization of the metho d

The e�ciency of the growth part of the algorithm signi�cantly dependson the realization of
the collectionsP` . In the implementation the P` are partitions of Q into boxes

B(c;r ) = f y 2 Rn : jyi � ci j � r i for i = 1; : : : ; ng;
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wherec;r 2 Rn , r i > 0, arethe center and the sizesof the box B(c;r ), respectively. Moreover,
only partitions are usedthat result from bisectingthe initial box Q repeatedly, wherein this
processof bisecting the relevant coordinate direction is changedsystematically (typically,
the bisectedcoordinate direction is varied cyclically).

Starting with P0 = f Qg, this processyields a sequenceP` of partitions of Q, that can
e�cien tly be storedin a binary tree. Note that it is easyto storearbitrary subsetsof the full
partition P` just by storing the corresponding part of the tree. In fact, in the initialization of
the algorithm onestarts with a singlebox on a given level `, so that the stored tree consists
of a single leaf. Whenever setsare addedto the current collection, the corresponding paths
are addedto the tree. Figure 13 illustrates the �rst three growth stepsfor the computation
of a covering of the Lorenz manifold on level 18 of the tree (all other parametersare as
described in Sec.6.3 below). The yellow box in Fig. 13(a) was created in the initialization
step and then grown in one step to obtain the blue boxes. Panels (b) and (c) show two
further growth steps,wherethe covering of the previousstep is again shown in yellow.

The hierarchical storageschemehasanothercrucial computational advantagein that it is
easierto decidewhich boxesare `hit' by mapping the boxesthat wereaddedin the previous
step of the continuation algorithm. Namely, for each of theseboxesB 2 P`+ k oneneedsto
compute the set F (B) = f B 0 2 P`+ k j D (B) \ B 0 6= ;g . SinceB contains an uncountable
number of points, this problemmust bediscretized.The obviousapproach is to choosea �nite
set T of test points in B and to approximate F (B) by ~F (B) = f B 0 2 P`+ k j D (T) \ B 0 6= ;g .
Using the tree structure, the determination of the box that contains the imageof a test point
can be accomplishedwith a complexity that only dependslogarithmically on the number of
boxesin P` [Dellnitz & Hohmann, 1997].

6.3 Box covering of the Lorenz manifold

Figure 14 shows a box covering of the Lorenz manifold W s(0). For the computation the
time-� map of the Lorenz system(2) was consideredwith � = � 0:1. This map is realized
by the classicalRunge-Kutta schemeof fourth order with a �xed step sizeof � 0:01. The
regionof interest Q is a box with radius (70; 70; 70) and center (10� 1; 10� 1; 10� 1); this o�set
centering is for a practical reason: it avoids having the origin on the edgeof a box. Level
` = 27 of the tree was usedand 16 growth stepswere performed,starting from a singlebox
containing the origin (i.e. k = 0). In each growth step, an equidistant grid of 125test points
in each box was mapped forward. The resulting object contains more than 4 million boxes.

Figure 14(a) shows the entire computed part of the Lorenz manifold from the common
viewpoint. The sameview is shown in Fig. 14(b) but now the manifold is transparent.
Figure 14(c) shows an enlargement of the transparent rendering near the central region.
Becausethe method is using the time-� map of the Lorenz system(2), the Lorenz manifold
�rst growsinitially mainly in the direction of the strongunstabledirection until the boundary
of the box of interest is reached. This can be seennicely in Fig. 13. Later steps of the
growth processthen start to build up the other part of the manifold, resulting in the images
in Fig. 14(a) and (b). The further enlargement near the scroll of the manifold in Fig. 14(d)
gives a local impressionof the box covering. Notice that covering of the manifold has a
thicknessof several box diametersat the end of the scroll.
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(a) (b)

(c) (d)

Figure 14: The Lorenz manifold computed with the box covering method of Dellnitz and
Hohmann seenfrom the common viewpoint (a). In panels (b) and (c) the manifold is
renderedtransparently. Panel (c) shows an enlargement near the z-axis, and panel (d) gives
a closerlook at the computedboxes.
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7 Discussion

After a recent urry of research activit y, several complementary methods areavailable today
to computeglobal (un)stable manifolds in applications. While thesemethods are still some-
what under development and testing, we hope that this survey will encouragethe readerto
considercomputing such global objects in systemsarising in applications.

Each of the methods presented in the previous sectionsis basedon a particular point
of view of characterizing a global (un)stable manifold. Common to all is the idea that the
manifold must be `grown' from local information near the saddlepoint, and the di�erence is
in how this is done. The choiceof method will generallydepend on the application onehas
in mind and on the particular questionsonewants to answer. This discussionis intended to
give an indication of the speci�c properties of the di�erent approaches.

Appro ximation by geodesic level sets. The method by [Krauskopf & Osinga,1999,
Krauskopf & Osinga,2003] is presently implemented for two-dimensionalmanifolds of sad-
dle points and saddle periodic orbits in a phase spaceof arbitrary dimension; seealso
[Osinga,2000, Osinga,2003]. This implementation approximates the manifold linearly be-
tweenmeshpoints, while the boundaryvalueproblems(9){(10) aresolvedby singleshooting.
It would bepossibleto usehigherorder interpolation betweenmeshpoints and collocation for
solvingthe boundaryvalueproblems. The method producesa very regularmeshthat consists
of (approximate) geodesiccirclesand approximate geodesics.This meansthat the manifold
is renderedasa geometricobject, independently of the dynamicson it. The meshis, in fact,
constructedso regularly that it can be interpreted as a crochet pattern. This allows one to
producea real-life model of the Lorenzmanifold; see[Osinga& Krauskopf, 2004] for details.
During a computation the interpolation error is controlled by prescribedmeshquality param-
eters,so that the correctnessof the method can be proved; see[Krauskopf & Osinga,2003]
for details.

The price onehas to pay for obtaining a guaranteed `geometricmesh' is that oneneeds
to set up and continue a boundary value problem for each new mesh point. This makes
the method more expensive comparedto other methods. With the non-optimized present
implementation and the accuracyparametersas in Sec.2.3, computing the Lorenz manifold
up to geodesicdistance140 takesabout 10 minutes, while the larger image in Fig. 5 with
69,900meshpoints took 40 minutes and 47 secondson an 800MHzPentium II I machine.

Becauseit is basedon the geodesic parametrization (6), the method works as long as
the geodesic level setsof this parametrization remain smooth circles. While this is not an
obstruction for computing the Lorenz manifold, there are exampleswherethe computation
stopswhen a geodesiccircle ceasesto be smooth; see[Krauskopf & Osinga,2003]. Further-
more, the method stopswhenit encounters an equilibrium or a periodic orbit on (the closure
of) the (un)stable manifold.

An implementation for global (un)stable manifolds of dimensionthree would already be
quite challenging. First of all, geodesic level sets are spheresin this case,on which one
needsto compute a regular mesh. Secondly, the method would require multi-parameter
continuation to continue the boundary value problems(9){(10) .
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BVP contin uation of tra jectories. The method by Doedelis arguablythe moststraight-
forward one. The continuation calculationscan be carried out using the standard boundary
value continuation capabilities of AUTO. This meansthat all that is required are rather
standard AUTO equationsand parameter �les. The orbits that make up the manifold are
computed very accurately, due to the high accuracyof the orthogonal collocation method,
which is superconvergent for the solution at the meshpoints and for scalar variables. Fur-
thermore, the boundary value continuation algorithms in AUTO, written in the f77 or C
programming language,are rather e�cien t, so that the calculations can generally be done
in relatively little computer time. For example,computing the Lorenz manifold up to a tra-
jectory arclength of 250 with a high resolution of NTST = 75, as in Fig. 7(a){(c), takes30
secondson a 1.6 MHz Pentium M laptop; for NTST = 25, which still givesgood resulution,
the computation time (including writing the output) drops to just over 10 seconds.

The method is very exible in that it allows for di�erent boundary conditions at the
endpoint of a tra jectory. This meansthat one can compute only a part of interest of the
manifold, as was illustrated in Fig. 7(d). However, the manifold cannot be `grown', so that
the continuation must be repeatedif a larger part of the manifold is desired.

While visualizing or even animating the computed tra jectories gives much insight into
the geometryof the manifold, it would require substantial post-processingto producea nice
meshrepresentation of the manifold as a two-dimensionalobject. In particular, the density
of the orbits may be high in areaswhere the further evolution of the tra jectories depends
sensitively on the current state. For example,in Fig. 7(a) and (c) the density of the orbits
is high alonga curve in the direction of the z-axis, that is, the direction of the weakly stable
eigenvector.

Computation of fat tra jectories. While also essentially computing tra jectories, the
method of [Henderson,2003] doesproducea nicemeshrepresentation by `fattening' the tra-
jectories with a string of polygonal patches. The method tends to minimize the need for
interpolation. When interpolation is neededthere is a guarantee that appropriate points ex-
ist, and at thosepoints information is availablewhich allowshigherorder interpolation or the
generationof an interpolating tra jectory. The algorithms for computating fat tra jectories,
for �nding a third-order approximation to the manifold, and for �nding interpolation points
are implemented for any dimensionk of the manifold. The interpolation itself is presently
limited to k = 2. The code usedto computethe Lorenzmanifold is available asOpenSource;
see[Henderson,2003].

The computation of a fat tra jectory is more expensive than straighforward integration,
becauseit adds equations for the evolution of the tangent spaceand curvatures. How-
ever, the implementation of updating the computed boundary is quite e�cien t; seealso
[Henderson,2002]. The overall algorithm is relatively fast. For example,the Lorenz mani-
fold in Fig. 9 was computedon a 375MHzPower3 processorin about 7.3 hours.

Finally, the algorithm may encounter a geometricproblem. It must beableto distinguish
between mesh points on di�erent sheetsof the invariant manifold, for example, where a
tra jectory returns closeto itself. This can be doneby checking the valuesof t and � at the
centers of the disks, but it demandssu�cien tly small disks so that those quantities vary
only little acrosseach disk. This requirement may result in many more meshpoints being
computed than is necessaryto obtain a geometrically smooth manifold. This geometric
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problem occurswhen tra jectoriesspiral tightly, as is the case,for example,on the unstable
manifolds of the two equilibria on the wings of the Lorenz attractor.

PDE form ulation. The PDE approach by [Guckenheimer& Vladimirsky, 2004] leadsto
a very e�cien t numerical method for computing a meshrepresentation of a global (un)stable
manifold. The computational cost of this method is largely independent of the geometric
sti�ness present in the system. For example,the Lorenz manifold in Fig. 12 was computed
in under 90 secondson a Pentium II I 850MHz processor.

The constructedapproximation M is `causal',that is, it contains approximate tra jectories
for all of the mesh points on @M . The method is not restricted to manifolds where the
level curves of the geodesic distance remain smooth. In particular, the method can be
used for approximating manifolds containing homoclinic and heteroclinic tra jectories; see
[Guckenheimer& Vladimirsky, 2004] for examples.

The computational cost of adding each meshpoint is proportional to the codimension
(n � k) of the manifold. When approximating manifoldsof high codimension,this is clearly a
disadvantagecomparedto other methods for which this cost is proportional to the dimension
of the manifold k. A secondlimitation of the method is that the constructedapproximation
is globally only �rst-order accurate,in contrast with, for example,the second-orderaccuracy
of computing fat tra jectories.

A variant of the code exists that usesa global coordinate systemde�ned by a triangu-
lated mesh. This meansthat the PDE method could be usedin a continuation framework,
where an approximation of the manifold for one parameter value is usedto build a global
parametrization for nearby parametervalues.This would reducethe costof locally extending
the meshnear @M at every step of the continuation.

The current implementation of the PDE approach works for two-dimensionalmanifolds
in a phasespaceof arbitrary dimension. An adaptive implementation for k � 3 will have to
employ a robust algorithm for a higher-dimensionallocal meshextension,which remainsa
challenge.

Box covering. The box covering algorithm of [Dellnitz & Hohmann, 1996],
[Dellnitz & Hohmann, 1997, Dellnitz et al., 2001, Dellnitz & Junge,2002]constructs a cov-
ering of (part of) the global invariant manifold. This covering consistsof a collection of
small boxes. The method is formulated for discretetime systems,and di�erential equations
canbe handledby consideringa corresponding time-� -map. It allows for the computation of
(un)stable manifolds of arbitrary invariant sets. It is possible(and implemented in GAIO )
to compute manifolds of arbitrary dimension. The `thickness' of the covering depends on
the contraction rate transverse to the manifold. The stronger the contraction, the fewer
`box-layers' along the manifold will be produced. In particular, the algorithm needsto be
modi�ed in order to apply it to Hamiltonian systems[Junge,2000b].

The key implementational issue,namely how to compute the image of a given box, is
typically discretizedby mappinga (�nite) setof test points in each box. Evidently, depending
on the properties of the underlying map, the choice of thesepoints determinesthe quality
of the resulting covering. Using too few points may lead to missingboxes, while using too
many slows down the computation. There exist strategiesfor a near-optimal choiceof these
points. In the casethat Lipschitz estimatesof the dynamical systemare available, onemay
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compute rigorous coverings. In this case,it can be ensuredthat the manifold is contained
inside the union of the setsin the constructedcovering [Dellnitz et al., 2001,Junge,2000a].

The overall computational cost is quite high when good resolution, that is, many boxes
are required. For example,the Lorenz manifold in Fig. 14 of more that 4 million boxestook
about 120 minutes on a 1:25 GHz G4 processor.Sincethe numerical cost dependson the
dimensionof the manifold, for manifoldsof dimensionlarger than two it may only be feasible
to compute rather coarseapproximations.
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