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On setting Rjl(k) = 4/D(k) (first display on p. 56), the partial-fraction decomposition
of Rjl(k) is given by

Rjl(k) =

4∑
ν=1

4

D′(kν)

1

k− kν
,

provided the poles kν, ν = 1, 2, 3, 4, are distinct. It is easily verified that Rjl has
multiple poles if j = l, or if j and l belong to the sequence sq = (q2 − q + 2)/2,
q = 0, 1, 2, . . ., with an offset of 2, that is j = sq1

and l = sq2
with |q1 − q2| = 2.

Otherwise, if there are no multiple poles, it follows that

gjl =

∞∑
k=1

Rjl(k) = −

4∑
ν=1

4

D′(kν)
ψ(1− kν). (1)

The expression (1) has been used to determine g24, g17, g13, g35. On simplification
by means of the functional equations (3) and the values ψ(1) = −γ, ψ′(1) = π2/6,
the Maple results at the bottom of p. 56 are precisely recovered.
Consider next the case j = l, in which k1 = k3, k2 = k4. The partial-fraction
decomposition of Rjj(k) is now given by

Rjj(k) =
4

(k− k1)2(k− k2)2
=

4

(k1 − k2)2

(
1

k− k1
−

1

k− k2

)2

=

=
4

(k1 − k2)2

(
1

(k− k1)2
+

1

(k− k2)2

)
−

8

(k1 − k2)3

(
1

k− k1
−

1

k− k2

)
.

Then it follows that

gjj =

∞∑
k=1

Rjj(k)

=
4

8j− 7
[ψ′(1− k1) +ψ′(1− k2)] +

8

(8j− 7)3/2
[ψ(1− k1) −ψ(1− k2)] . (2)

The expression (2) has been used to determine g11, g22, g33, and on simplification
there is agreement with the Maple results on p. 57.
The Maple result for g33 can be further simplified by use of the following properties
of the ψ function:

• functional equations [AS84, form. 6.3.5]

ψ(z+ 1) =
1

z
+ψ(z), ψ′(z+ 1) = −

1

z2
+ψ′(z); (3)
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• reflection formulas [AS84, form. 6.3.7]

ψ(1/2+z)−ψ(1/2−z) = π tan(πz), ψ′(1/2+z)+ψ′(1/2−z) = π2 sec2(πz).

(4)

By repeated use of (3) we establish that

ψ

(
7±

√
17

2

)
=

2∑
m=0

2

2m+ 1±
√
17

+ψ

(
1±

√
17

2

)
,

ψ′

(
7±

√
17

2

)
= −

2∑
m=0

4

(2m+ 1±
√
17)2

+ψ′

(
1±

√
17

2

)
.

Next it follows that

ψ

(
7−

√
17

2

)
−ψ

(
7+

√
17

2

)
=

=

2∑
m=0

4
√
17

(2m+ 1)2 − 17
+ψ

(
1−

√
17

2

)
−ψ

(
1+

√
17

2

)

= −
1

4

√
17− π tan(

√
17π/2),

ψ′

(
7−

√
17

2

)
+ψ′

(
7+

√
17

2

)
=

= −

2∑
m=0

8[(2m+ 1)2 + 17]

[(2m+ 1)2 − 17]2
+ψ′

(
1−

√
17

2

)
+ψ′

(
1+

√
17

2

)

= −
145

16
+ π2 sec2(

√
17π/2),

by means of the reflection formulas (4).
Insert these results into the Maple expression for g33 on top of p. 57. Then we obtain

g33 =
4

17

(
−
145

16
+ π2 sec2(

√
17π/2)

)
+
8
√
17

289

(
−
1

4

√
17− π tan(

√
17π/2)

)
= −

9

4
+
4π

289
sec2(

√
17π/2) [17π−

√
17 sin(

√
17π)], (5)

in accordance with the Mathematica expression (middle of p. 57).

In the same manner we derive an expression for gjj, as given by (2), in terms of
elementary functions. The idea is to reduce

ψ(1− k1,2) = ψ

(
2j+ 1∓

√
8j− 7

2

)
, ψ′(1− k1,2) = ψ′

(
2j+ 1∓

√
8j− 7

2

)
,
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to ψ((1∓
√
8j− 7)/2), ψ′((1∓

√
8j− 7)/2) by repeated use of (3). Next one should

use the reflection formulas (4). Omitting the details we present the final result

gjj = − 4

j−1∑
m=0

1

(m2 +m+ 2− 2j)2
+

+
4π

(8j− 7)2
sec2(

√
8j− 7π/2) [(8j− 7)π−

√
8j− 7 sin(

√
8j− 7π)]. (6)

The latter expression is valid if
√
8j− 7 6= 2q + 1, (odd integer), q = 0, 1, 2, . . ., or

equivalently, if j 6= (q2 +q+ 2)/2. For such values of j, the (m = q)-term of the sum
in (6) and sec2(

√
8j− 7π/2) become singular; of course, these singularities cancel.

In the case j = (q2 + q+ 2)/2 for some q = 0, 1, 2, . . ., one has
√
8j− 7 = 2q+ 1,

k1 = 1− j+ q, k2 = −j− q, whereupon the expression (2) simplifies to

gjj =
4

(2q+ 1)2
[ψ′(j− q) +ψ′(1+ j+ q)] +

8

(2q+ 1)3
[ψ(j− q) −ψ(1+ j+ q)].

By means of (3) and the known value ψ′(1) = π2/6 the latter expression can be
further reduced to

gjj =
4π2

3(2q+ 1)2
−

4

(2q+ 1)2

[
j−q−1∑
m=1

1

m2
+

j+q∑
m=1

1

m2

]
−

8

(2q+ 1)3

j+q∑
m=j−q

1

m
,

(7)
valid for j = (q2 + q + 2)/2 for some q = 0, 1, 2, . . .. In the special cases q = 0,
j = 1, and q = 1, j = 2, the expression (7) leads again to the Maple results for g11,
g22 on p. 56. As an additional result for q = 2, j = 4, one has

g44 =
4π2

75
−
11057

22500
.
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