Note on Chapter 3

J. Boersma (January 9, 2004)

On setting $R_{j l}(k)=4 / D(k)$ (first display on p. 56), the partial-fraction decomposition of $R_{j l}(k)$ is given by

$$
\mathrm{R}_{\mathfrak{j l}}(\mathrm{k})=\sum_{v=1}^{4} \frac{4}{\mathrm{D}^{\prime}\left(\mathrm{k}_{v}\right)} \frac{1}{\mathrm{k}-\mathrm{k}_{v}},
$$

provided the poles $k_{v}, v=1,2,3,4$, are distinct. It is easily verified that $R_{j l}$ has multiple poles if $j=l$, or if j and l belong to the sequence $s_{q}=\left(q^{2}-q+2\right) / 2$, $q=0,1,2, \ldots$, with an offset of 2 , that is $j=s_{q_{1}}$ and $l=s_{q_{2}}$ with $\left|q_{1}-q_{2}\right|=2$. Otherwise, if there are no multiple poles, it follows that

$$
\begin{equation*}
g_{j l}=\sum_{k=1}^{\infty} R_{j l}(k)=-\sum_{v=1}^{4} \frac{4}{D^{\prime}\left(k_{v}\right)} \psi\left(1-k_{v}\right) . \tag{I}
\end{equation*}
$$

The expression (I) has been used to determine $g_{24}, g_{17}, g_{13}, g_{35}$. On simplification by means of the functional equations (3) and the values $\psi(1)=-\gamma, \psi^{\prime}(1)=\pi^{2} / 6$, the Maple results at the bottom of p. 56 are precisely recovered.
Consider next the case $j=l$, in which $k_{1}=k_{3}, k_{2}=k_{4}$. The partial-fraction decomposition of $R_{j j}(k)$ is now given by

$$
\begin{aligned}
\mathrm{R}_{\mathrm{jj}}(\mathrm{k}) & =\frac{4}{\left(k-k_{1}\right)^{2}\left(k-k_{2}\right)^{2}}=\frac{4}{\left(k_{1}-k_{2}\right)^{2}}\left(\frac{1}{k-k_{1}}-\frac{1}{k-k_{2}}\right)^{2}= \\
& =\frac{4}{\left(k_{1}-k_{2}\right)^{2}}\left(\frac{1}{\left(k-k_{1}\right)^{2}}+\frac{1}{\left(k-k_{2}\right)^{2}}\right)-\frac{8}{\left(k_{1}-k_{2}\right)^{3}}\left(\frac{1}{k-k_{1}}-\frac{1}{k-k_{2}}\right) .
\end{aligned}
$$

Then it follows that

$$
\begin{align*}
& g_{j j}=\sum_{k=1}^{\infty} R_{j j}(k) \\
& =\frac{4}{8 j-7}\left[\psi^{\prime}\left(1-k_{1}\right)+\psi^{\prime}\left(1-k_{2}\right)\right]+\frac{8}{(8 j-7)^{3 / 2}}\left[\psi\left(1-k_{1}\right)-\psi\left(1-k_{2}\right)\right] . \tag{2}
\end{align*}
$$

The expression (2) has been used to determine g_{11}, g_{22}, g_{33}, and on simplification there is agreement with the Maple results on p. 57.
The Maple result for g_{33} can be further simplified by use of the following properties of the ψ function:

- functional equations [AS84, form. 6.3.5]

$$
\begin{equation*}
\psi(z+1)=\frac{1}{z}+\psi(z), \quad \psi^{\prime}(z+1)=-\frac{1}{z^{2}}+\psi^{\prime}(z) \tag{3}
\end{equation*}
$$

- reflection formulas [AS84, form. 6.3.7]
$\psi(1 / 2+z)-\psi(1 / 2-z)=\pi \tan (\pi z), \psi^{\prime}(1 / 2+z)+\psi^{\prime}(1 / 2-z)=\pi^{2} \sec ^{2}(\pi z)$.

By repeated use of (3) we establish that

$$
\begin{gathered}
\psi\left(\frac{7 \pm \sqrt{17}}{2}\right)=\sum_{m=0}^{2} \frac{2}{2 m+1 \pm \sqrt{17}}+\psi\left(\frac{1 \pm \sqrt{17}}{2}\right), \\
\psi^{\prime}\left(\frac{7 \pm \sqrt{17}}{2}\right)=-\sum_{m=0}^{2} \frac{4}{(2 m+1 \pm \sqrt{17})^{2}}+\psi^{\prime}\left(\frac{1 \pm \sqrt{17}}{2}\right) .
\end{gathered}
$$

Next it follows that

$$
\begin{aligned}
& \psi\left(\frac{7-\sqrt{17}}{2}\right)-\psi\left(\frac{7+\sqrt{17}}{2}\right)= \\
& =\sum_{m=0}^{2} \frac{4 \sqrt{17}}{(2 m+1)^{2}-17}+\psi\left(\frac{1-\sqrt{17}}{2}\right)-\psi\left(\frac{1+\sqrt{17}}{2}\right) \\
& =-\frac{1}{4} \sqrt{17}-\pi \tan (\sqrt{17} \pi / 2), \\
& \psi^{\prime}\left(\frac{7-\sqrt{17}}{2}\right)+\psi^{\prime}\left(\frac{7+\sqrt{17}}{2}\right)= \\
& =-\sum_{m=0}^{2} \frac{8\left[(2 m+1)^{2}+17\right]}{\left[(2 m+1)^{2}-17\right]^{2}}+\psi^{\prime}\left(\frac{1-\sqrt{17}}{2}\right)+\psi^{\prime}\left(\frac{1+\sqrt{17}}{2}\right) \\
& =-\frac{145}{16}+\pi^{2} \sec ^{2}(\sqrt{17} \pi / 2),
\end{aligned}
$$

by means of the reflection formulas (4).
Insert these results into the Maple expression for g_{33} on top of p. 57. Then we obtain

$$
\begin{align*}
\mathrm{g}_{33} & =\frac{4}{17}\left(-\frac{145}{16}+\pi^{2} \sec ^{2}(\sqrt{17} \pi / 2)\right)+\frac{8 \sqrt{17}}{289}\left(-\frac{1}{4} \sqrt{17}-\pi \tan (\sqrt{17} \pi / 2)\right) \\
& =-\frac{9}{4}+\frac{4 \pi}{289} \sec ^{2}(\sqrt{17} \pi / 2)[17 \pi-\sqrt{17} \sin (\sqrt{17} \pi)] \tag{5}
\end{align*}
$$

in accordance with the Mathematica expression (middle of p. 57).

In the same manner we derive an expression for $g_{j j}$, as given by (2), in terms of elementary functions. The idea is to reduce
$\psi\left(1-k_{1,2}\right)=\psi\left(\frac{2 j+1 \mp \sqrt{8 j-7}}{2}\right), \psi^{\prime}\left(1-k_{1,2}\right)=\psi^{\prime}\left(\frac{2 j+1 \mp \sqrt{8 j-7}}{2}\right)$,
to $\psi((1 \mp \sqrt{8 j-7}) / 2), \psi^{\prime}((1 \mp \sqrt{8 j-7}) / 2)$ by repeated use of (3). Next one should use the reflection formulas (4). Omitting the details we present the final result

$$
\begin{align*}
g_{j j}= & -4 \sum_{m=0}^{j-1} \frac{1}{\left(m^{2}+m+2-2 j\right)^{2}}+ \\
& +\frac{4 \pi}{(8 j-7)^{2}} \sec ^{2}(\sqrt{8 j-7} \pi / 2)[(8 j-7) \pi-\sqrt{8 j-7} \sin (\sqrt{8 j-7} \pi)] . \tag{6}
\end{align*}
$$

The latter expression is valid if $\sqrt{8 j-7} \neq 2 q+1$, (odd integer), $q=0,1,2, \ldots$, or equivalently, if $j \neq\left(q^{2}+q+2\right) / 2$. For such values of j, the $(m=q)$-term of the sum in (6) and $\sec ^{2}(\sqrt{8 j-7} \pi / 2)$ become singular; of course, these singularities cancel. In the case $j=\left(q^{2}+q+2\right) / 2$ for some $q=0,1,2, \ldots$, one has $\sqrt{8 j-7}=2 q+1$, $k_{1}=1-j+q, k_{2}=-j-q$, whereupon the expression (2) simplifies to
$g_{j j}=\frac{4}{(2 q+1)^{2}}\left[\psi^{\prime}(j-q)+\psi^{\prime}(1+j+q)\right]+\frac{8}{(2 q+1)^{3}}[\psi(j-q)-\psi(1+j+q)]$.
By means of (3) and the known value $\psi^{\prime}(1)=\pi^{2} / 6$ the latter expression can be further reduced to

$$
\begin{equation*}
g_{j j}=\frac{4 \pi^{2}}{3(2 q+1)^{2}}-\frac{4}{(2 q+1)^{2}}\left[\sum_{m=1}^{j-q-1} \frac{1}{m^{2}}+\sum_{m=1}^{j+q} \frac{1}{m^{2}}\right]-\frac{8}{(2 q+1)^{3}} \sum_{m=j-q}^{j+q} \frac{1}{m} \tag{7}
\end{equation*}
$$

valid for $\mathfrak{j}=\left(q^{2}+q+2\right) / 2$ for some $q=0,1,2, \ldots$. In the special cases $q=0$, $j=1$, and $q=1, j=2$, the expression (7) leads again to the Maple results for g_{11}, g_{22} on p . 56. As an additional result for $\mathrm{q}=2, j=4$, one has

$$
g_{44}=\frac{4 \pi^{2}}{75}-\frac{11057}{22500}
$$

