
Exactly Solve Integer Linear Systems Using

Numerical Methods

Zhendong Wan

Department of Computer Science, University of Delaware, Newark, DE, USA

Abstract

We present a new fast way to exactly solve non-singular linear systems with integer
coefficients using numerical methods. This leads to high performace in practice and
also leads to asymptoticly fast algorithms for some special family of linear systems.
Our method is to find an initial approximate solution by using a fast numerical
method, then amplify the approximate solution by a scalar, adjust the amplified
solution and corresponding residual so that they can be stored exactly, and repeat
these steps to refine the solution until high enough accuracy is achieved, and finally
reconstruct the rational solution. We will expose the theoretical cost and show some
experimental results.

Key words: linear system, numerical linear methods, rational solution

1 Introduction

Both symbolic linear methods and numerical linear methods can be used to
solve linear systems. But they use different techniques and algorithms, and
have been developed independently. Symbolic linear methods often use ei-
ther p-adic lifting Dixon (1982); Moenck and Carter (1979) or the Chinese
remainder algorithm or both. They all are based on solving the linear system
modulo a big integer and finally reconstructing the rational solution. Numer-
ical methods use either direct methods like Gaussian Elimination (with or
without pivoting), QR factorization, or iterative methods such as Jacobi’s
method, Lanczos’ method, or the GMRES method. Symbolic linear methods
can deliver the accurate answer without any error, though they are often more

Email address: wan@mail.eecis.udel.edu (Zhendong Wan).

Preprint submitted to Elsevier Science 28 January 2005

expensive in computation time than numerical linear methods, But numeri-
cal linear methods are subject to convergence problems and the limitation of
floating point precision.

In this paper, we combine the two methods. We describe a new way to ex-
actly solve non-singular integer linear systems using numerical methods. It is
effective in practice since over the past few decades, hardware floating point
operations have been sped up dramatically, from a few hundred FLOPS in
1940s to a few GFLOPS now, even in PCs. Also many high performance nu-
merical linear packages are developed using fast BLAS implementation for
dense systems. Also this approach leads to asymptoticly faster algorithms for
some special sparse systems. The sparse systems are discussed in section 3.2.

The motivation of this paper is the high performance of numerical packages
and this simple fact: If two rational numbers r1 = a

b
, r2 = c

d
are given with

gcd(a, b) = 1, gcd(c, d) = 1, and r1 �= r2, then |r1 − r2| ≥ 1
bd

. That is, rational
numbers with bound denominators are discrete, though it is well known that
all rational numbers are dense in the real line. Because of this simple fact, if
we can compute the solution with very high accuracy, then we can reconstruct
the rational solution.

Generally numerical linear methods are inexact when carried out on a com-
puter: one hopes for answers accurate up to machine precision (or software
floating point precision), no better. In order to achieve more accuracy than
machine precision, our idea is simple, approximation, amplification and ad-
justment in short words. More precisely, we first find an approximate solution
with a numerical method, then amplify the approximate solution by a chosen
suitable scalar, adjust the amplified approximate solution and corresponding
residual so that they can be stored exactly as integers, repeat these steps until
a desired accuracy is achieved. The approximating, amplifying, and adjusting
idea enable us to compute the solution with arbitrarily high accuracy without
any high precision software floating point arithmetic involved. The details are
discuss in section 3. The scaling idea has been used for a long time in nu-
merical linear methods in a different way. See e.g. (Forsythe and Moler, 1967,
Chapter 2). Numerical methods often simply use it as preconditioners.

In this paper, we use M(l) to denote the bit operations required to multiply
two integers with bit length at most l. By Schönhage and Strassen algorithm
(von zur Gathen and Gerhard, 1999, Theorem 8.24), M(l) = O(l log l log log l).
We use log ||A|| to denote the maximum of bit length of entries of integer
matrix A.

Next section is about the rational reconstruction. It is a classsic result. Best
approximation of the continued fraction enables us to reconstruct a rational
number with certain constraint from a real number. Then in the following

2

section we describe a way how to achieve arbitrary accuracy using numerical
linear methods on the condition that inputs are integer and matrices are well
conditioned. After that these ideas lead to an asymptoticly fastest algorithm
for a special sparse family. Finally the potential usage of our new algorithms
for sparse linear systems is demonstrated with a challenge problem.

2 Continued fraction

the best approximation with bound denominator of a real number is a seg-
ment of its continued fraction. Just a quick reminder, a brief decription of the
continiued fraction is given. For a real number r, a simple continued fraction
is an expression in the form

r = a0 +
1

a1 + 1
a2+ 1

a3+···

,

where all ai are integers. From now on, we assume that if r ≥ 0, then a0 ≥ 0,
all ai > 0 for i ≥ 1, and if r < 0, then a0 ≤ 0, all ai < 0 for i ≥ 1. A more
convenient notation is r = [a0; a1, a2, · · ·] Intuitively, we can apply extended
Euclid’s algorithm for finding the greatest common divisor to compute the
simple continued fraction of a rational number.

For example, let r = 3796
1387

. We can compute gcd(3796, 1387) by Euclid’s algo-
rithm, 3796 = 1387 ·2+1022; 1387 = 1022 ·1+365; 1022 = 365 ·2+292; 365 =
292·1+73; 292 = 73·4. We re-write these equations, 3796/1387 = 2+1022/1387
= 2 + 1/(1387/1022) = 2 + 1/(1 + 365/1022) = 2 + 1/(1 + 1/(1022/365))
= 2+1/(1+1/(2+292/365) · · · = 2+1/(1+1/(2+1/(1+4))) = [2; 1, 2, 1, 4].

For a simple continued fraction for r (either finite or infinite) one defines
a family of finite segments sk = [a0; a1, a2, ..., ak], each sk being a rational
number: sk = pk/qk with qk > 0 and gcd(pk, qk) = 1. There are properties
about simple continued fraction from number theory. Following we list some,
assuming r ≥ 0. For r < 0, there are similar properties about them.

(1) Every rational number can be associated with a finite continued fraction.
Irrational numbers can also be uniquely associated with simple continued
fractions. If we exclude the the finite fractions with the last quotient
equal to 1, then the correspondence between rational numbers and finite
continued fractions becomes one to one.

(2) For all k ≥ 2, pk = akpk−1 + pk−2, qk = akqk−1 + qk−2.
(3) qkpk−1 − pkqk−1 = (−1)k. And sk − sk−1 = (−1)k−1/(qkqk−1).
(4) s0 < s2 < s4 < s6 < · · · < r < · · · < s7 < s5 < s3 < s1.

3

Based on the nice properties about continued fraction above, now we can
prove:

THEOREM 1 Given r, B > 0 there is at most one rational solution a
b

such
that |a

b
− r| < 1

2Bb
, 0 < b ≤ B, and gcd(a, b) = 1. Moreover, if there is one

rational solution a
b
, then for some k, a

b
= pk

qk
, where (pk, qk) is a segment of the

simple continued fraction of r, such that either pk/qk = r or qk ≤ B < qk+1.
Moreover, if r = n

d
, then there is an algorithm to compute (pk, qk), which

requires O(M(l) log l) bit operations, , where l is the maximum bit length of n
and d.

Note:

(1) This is a classic result. I put it here just as a refreshing remindar.
(2) If B = 1, then there is either no solution or a

b
= the nearest integer to r

1
.

PROOF.First we prove there is at most one solution. By way of contradiction,
if there are two different rational solutions a1

b1
and a2

b2
with 0 < b1, b2 ≤ B,

gcd(a1, b1) = gcd(a2, b2),
a1

b1
�= a2

b2
. Then |a1

b1
− a2

b2
| ≤ |a1

b1
− r| + |a2

b2
− r| <

1
2Bb1

+ 1
2Bb2

≤ 1
b1b2

, while |a1

b1
− a2

b2
| = |a1b2−b1a2

b1·b2 | ≥ 1
b1b2

. Contradiction! So there
is at most one solution.

If a
b

is a solution with 0 < b ≤ B, and gcd(a, b) = 1. Then we need to prove
a
b

= pk

qk
, for some k, such that either pk/qk = r or qk ≤ B < qk+1. By way

of contradiction, suppose a
b
�= pk

qk
. If pk/qk = r, then pk

qk
is another rational

solution. Contradiction! Now we assume qk ≤ B < qk+1. We know by property
3, |pk

qk
− pk+1

qk+1
| = 1

qkqk+1
. Also |a

b
− pk

qk
| ≥ 1

bqk
> 1

qkqk+1
. So a

b
doesn’t lie between pk

qk

and pk+1

qk+1
. By property 4, we know r must lie between pk

qk
and pk+1

qk+1
. So |a

b
− r|

≥ min(|a
b
− pk

qk
|, |a

b
− pk+1

qk+1
|) ≥ 1

bqk+1
. Therefore 1

2Bb
> 1

bqk+1
, qk+1 > 2B.

Thus |pk

qk
− r| ≤ |pk

qk
− pk+1

qk+1
| = 1

qkqk+1
< 1

2qkB
. so pk

qk
is another solution. Contra-

diction!

If r = n
d
, the (pk, qk) can be computed by half gcd algorithm (see (von zur

Gathen and Gerhard, 1999, Algorithm 11.4)). It needs O(M(l) log l) bit oper-
ations.

3 Rational solver for integer linear systems

In the section, we present a new way to exactly compute the solution of a non-
singular linear system with integer coefficients, repeatedly using a numerical
method. It is well known that numerical linear methods are inexact when
carried out on a computer. Iterative refinement methods (see Forsythe and

4

Moler (1967); Demmel (1997); Geddes and Zheng (2002)) can be used to
refine the solution. The refinement Geddes and Zheng (2002) is a recent result,
very effective in computing a solution with a pre-set high precision. It works
this way: For input A, b, and a pre-set precision, initially solve Ax = b in
the hardware floating point precision (lower than the pre-set high precision),
repeat the following steps enough times to refine the answer until the desired
accuracy is achieved, r = b − Ax in a higher precision proportional to the
step count, solve A · ∆x = r in the hardware floating point precision, update
x = x + ∆x in a higher precision proportional to the step count. Iterative
refinement methods such as this one help improve the accuracy of the answers,
but the accuracy is limited to machine precision (or the software floating
point precision). That is, the answers are accurate up to machine precision
(or the software floating point precision), no better. Also each refinement
iteration requires a computation in high precision. The cost of one software
floating point operation increases rapidly with respect to the precision. It has
been illustrated in (Geddes and Zheng, 2002, Figure 1). Our approximating,
amplifying and adjusting idea works this way: for input integer matrix A and
integer vector b, initialize the solution x = 1

d
· n with d = 1 and vector n = 0,

initialize r = b. repeat the following steps enough times to achieve any desired
accuracy, find an approximate solution A · ∆x = r in the hardware floating
point arithmetic, choose a suitable scalar α, amplify and adjust the ∆x with
rationals 1

∆d
·∆n by setting ∆d = α, ∆n = (≈ α ·∆x1, . . . ,≈ α ·∆xn), update

answer: n = α · n + ∆n and d = ∆d · d, update residual r = α · r − A ·
∆n. In each refinement iteration, the amplified and adjusted residual can be
stored exactly, and its bit length can be well controlled. Thus our method can
be used to achieve the arbitrary high accuracy of the answers without high
precision software floating point arithmetic involved. After sufficient accuracy
is achieved, the final rational solution can be reconstructed.

As in most numerical analysis, we will use the infinity-norm in the per-
formance analysis. Specifically, for a n × m matrix A = (aij), we define
||A||∞ = max1≤i≤n

∑
1≤j≤m |aij |. For a vector b of length n, we define ||b||∞ =

max1≤j≤n|bj |;

3.1 Dense integer linear system solver

We apply our main idea to the dense linear system in detail: algorithm, theo-
rem, and remarks.

Algorithm 1 Rational solver for dense case
Input:

• A, a non-singular m × m integer matrix.

5

• b, a right hand side integer vector.

Output:

• x, a rational vector, solution of Ax = b.

Procedure:

(1) Compute floating point matrix A−1, the inverse of A using floating point
arithmetics. [A−1, the inverse of A, may be computed using any backward
stable numerical method. Even more, it doesn’t need to be computed ex-
plicitly and can simply be stored in its factorization form, because it will
be used as a blackbox.]

(2) Set integer d(0) := 1. [The common denominator of the answer.]
(3) Set integer vector r(0) := b; [The residual.]
(4) Set integer i := 0; [Step counter]
(5) Compute integer B, the Hadamard bound of A, which bounds the deter-

minant and all (m − 1) × (m − 1) minors of A.
(6) repeat the following steps until d(i) > 2m · B2(2−i||b||∞ + ||A||∞).

6.1 i := i + 1.
6.2 Compute x̄(i) = A−1r(i−1) in floating point arithmetic; [An approximate

solution Ax = r(i−1).]

6.3 Compute the integer scalar, α(i) := min(230, 2
�log2(

||r(i−1)||∞
||r(i−1)−Ax̄(i)||∞

)−1�
in

floating point arithmetic; [For high performance, α is better chosen to
a power of 2 since in this case any integer multiplying the α can be
replaced by shifting bits. 30 is a constant number, which is better chosen
to be a little smaller than the bit length of the hardware integer for high
performance reason, 30 for 32-word machines. For small size systems,
the approximate maybe equals to the exact anser. So that the constant
30 will make the algorithm not abort, since in that case α becomes
positive infinity.]

6.4 if α(i) < 2, abort with error message ”insufficient numerical accuracy”.
6.5 Exactly compute integer vector x(i) := (≈ α(i) · x̄

(i)
1 , . . . , (≈ α(i) · x̄(i)

m).
x(i) is the nearst integer of α(i) · x̄(i) component-wise, obviously ||x(i) −
α(i) · x̄(i)||∞ ≤ 0.5. [Amplify and adjust]

6.6 Exactly compute integer d(i) := d(i−1) · α(i)

6.7 Exactly compute integer vector r(i) := α(i) · r(i−1) − Ax(i). [Amplify the
residual by a scalar each time.]

(7) Set k := i

(8) Compute integer vector n(k) =
∑

1≤i≤k
d(k)

d(i) ·x(i), noting d(k)

d(i) =
∏

i<j≤k α(j).

(9) Reconstruct rational solution x from 1
d(k) · n(k) using Theorem 1 with de-

nominators bounded by B.
(10) Return x.

THEOREM 2 If, in each iteration, the α(i) in step 6.3 is not over computed,

6

that is α(i) is no larger than the actual value of ||r(i−1)||∞
2||r(i−1)−Ax̄i(i)||∞ due to floating

point approximation, then the algorithm above will either abort or terminate
with the correct rational solution, and in the ith iteration, ||r(i)||∞ = ||d(i)(b−
A 1

d(i) · n(i))||∞ ≤ 2−i||b||∞ + ||A||∞.

PROOF.On the input of A, b, if the algorithm aborts, the statement is true.
Otherwise, we need to show the algorithm terminates with correct rational
answer. First we show the algorithm will terminate. Let us estimate d(i) =∏

1≤j≤i α
(j) ≥ ∏

1≤j≤i 2 ≥ 2i, since it doesn’t abort, that is α(i) >= 2. We

know 2i

i+1
increases rapidly, so the loop inside the algorithm runs finitely many

iterations. The algorithm will terminate. Now we prove the correctness. Let
n(i) =

∑
1≤j≤i

d(k)

d(j) · x(j), the numerator of the accumulated solution after the

first i iterations. We need to estimate e(i) = || 1
d(i) · n(i) −A−1b||∞, the norm of

the absolute error of the solution in each iteration. By induction, we can prove
that r(i) = d(i)(b−A 1

d(i) ·n(i)), so e(i) = || 1
d(i) ·n(i) −A−1b||∞ = 1

d(i) ||A−1r(i)||∞.

Now we need to estimate ||r(i)||∞. In each iteration, by the hypotheses , we
have ||Ax̄(i) − r(i−1)||∞ ≤ 1

2α(i) · ||r(i−1)||∞. By the definition of x(i), we know

||x(i) − α(i) · x̄(i)||∞ ≤ 0.5. So

||r(i)||∞ = ||Ax(i) − α(i) · r(i−1)||∞
≤ ||α(i) · Ax̄(i) − α(i) · r(i−1)||∞ + ||Ax(i) − α(i) · Ax̄(i)||∞
≤ 0.5||r(i−1)||∞ + 0.5||A||∞.

Therefore ||r(i)||∞ ≤ 1
2i ||b||∞+||A||∞. Thus e(i) = 1

d(i) ||A−1r(i)||∞ ≤ 1
d(i) ||A−1||∞

(1
2i ||b||∞ + ·||A||∞), for i ≥ 1. Let k be the value of i when the loop stops.

Let us estimate 2Bdet(A)e(k). So far, we know 2Bdet(A)e(k) < 2
d(k) ||Bdet(A) ·

A−1||∞(2−k||b||∞ + ||A||∞). We know det(A)A−1 is the adjoint matrix of A.
Obviously, for non-singular integer matrices A, the Hadamard bound bounds
very minor of A. That is, each entry of det(A)A−1 is (m−1)×(m−1) minor of

A. Therefore ||det(A)A−1||∞ ≤ mB. Thus e(k)2Bdet(A) ≤ 2mB2(2−k||b||∞+||A||∞)
d(k)

< 1. So we have e(k) < 1
2Bdet(A)

. Since || 1
d(k)·n(k) − A−1b||∞ < 1

2Bdet(A)
, and by

Cramer’s rule we know det(A) · A−1b is an integer vector, by Theorem 1, the
reconstructed rational solution must be equal to A−1b .

Remarks:

(1) The asymptotic time complexity is comparable with the Dixon lifting
algorithm Dixon (1982).

(2) The idea of (Pan and Wang, 2002, section 4) can be used to accelerate
the final rational reconstruction step.

(3) In implementation, it is possible to choose all α(i) the same, which usually
depends on the numerical linear algorithm and the condition number of
the matrix.

7

(4) In implementation, in each iteration, we may detect if the α(i) is over
computed by checking if the infinity norm of residual computed in step
6.7 is as small as expected in theory.

(5) This algorithm doesn’t have to be completed. Just a few iterations can
be used to achieve a desired accuracy. Since from the proof above we
know, after i iterations, if we return accumulated answer 1

d(i) n
(i) as the

solution, then the inifity norm of the absolute residual, ||b−A · 1
d(i) n

(i)||∞,
is less than 1∏

1≤j≤i
α(i) (2

−1||b||∞+ ||A||∞), which implies that the absolute

residual will decrease exponentially.

3.1.1 Total cost for well conditioned matrices

In practice, the matrices are often well-conditioned. For the well conditioned
matrices, the algorithm doesn’t abort, but terminates with the correct rational
solution if a backward stable numerical method is used. The entry of the am-
plified residual will be bound by ||b||∞ + ||A||∞. But in estimation of the cost,
we need to estimate ||x̄(i)||∞, If A is well conditioned, then ||A−1||∞ is small. In
each iteration, ||x̄(i)||∞ ≈ ||A−1r(i−1)||∞ ≤ ||A−1||∞·||r(i−1)||∞ = O(||r(i−1)||∞).
So each iteration needs O(m2) floating point operations and O∼(m2(log ||A||+
log ||b||∞)) 32-bit integer operations. Now we estimate the number of itera-
tions. We know the Hadamard bound B and log B = O∼(m log ||A||). So the
number of iteration required is O∼(m log ||A||+log ||b||∞). Thus the loop costs
O∼(m3(log ||A||)(log ||A|| + log ||b||∞)).

The computation of A−1 costs O(m3) floating point operations, the computa-
tion of n(k) costs O∼(m2(log ||A||+ log ||b||∞)) bit operations by using divide-
and-conquer method and fast integer arithmetic. The final rational reconstruc-
tion in Theorem 1 will cost O∼(m2(log ||A|| + log ||b||∞)) bit operations. So
the asymptotic cost is O∼(m3(log ||A||)(log ||A|| + log ||b||∞)).

3.1.2 Dense linear system experimentation

The following table is the comparison of the running time of three different
methods. Plain Dixon is an implementation of Dixon lifting without calling
BLAS in LinBox 1 . Dixon CRA BLAS is an implementation by Z. Chen and
A. Storjohann Chen and Storjohann (2004). This method uses the idea of
FFLAS Dumas et al. (2002a) and a mixture of Dixon lifting and the Chinese
remainder algorithm. Dsolver is our simple implementation of algorithm 1, in
C, using LAPACK routines implemented in ATLAS 2 .

1 LinBox is an exact computational linear algebra package under development,
www.linalg.org
2 ATLAS is a linear algebra software and provides C and Fortran77 interfaces to a
portably efficient BLAS implementation, as well as a few routines from LAPACK

8

order 100 200 300 400 500 600 700 800

Plain Dixon 0.91 7.77 29.2 78.38 158.85 298.81 504.87 823.06

Dixon CRA BLAS 0.11 0.60 1.61 3.40 6.12 10.09 15.15 21.49

dslover 0.03 0.20 0.74 1.84 3.6 6.03 9.64 14.31

In the table above, the time is in seconds. Tests are run in sequential code
in a server with 3.2GHZ Intel Xeon processors and 6GB memory. All entries
are randomly and independently chosen from [−220, 220]. Clearly, both dsolver
and Dixon CRA BLAS benefits from high performance of BLAS routines im-
plemented in ATLAS and are much faster than Plain Dixon. Our algorithm is
much easier to be implemented than the idea used in Dixon CRA BLAS. And
also dsolver is faster than Dixon CRA BLAS. The reason can be explained
as follows. Dixon lifting and our method need near 2 log(det(A))

log p
and 2 log(det(A))

log(α)

iterations, respectively, where p is the base of p-adic lifting and α is the ge-
ometric average of α(i). For a well conditioned matrix, the α(i) > 232 in each
iteration. That is, in each iteration, dsolver can get at least 32 binary leading
bits of the exact solution of Ax = r(i). While in Dixon CRA BLAS, using
Dixon lifting and FFLAS, each iteration in Dixon lifting can only get a p-adic
digit, p < 227. So our method is expected to use fewer iterations. And also our
method can directly call BLAS routines without any extra cost for conversion
between integer and floating point representation. Then it is not surprising
that dsolver is faster than Dixon CRA BLAS.

3.2 Sparse integer linear system solver

The main idea is to compute floating point solutions of linear systems using
iterative methods such as Lanczos method, the GMRES method, or Jacobi’s
method, using a few cheap floating point matrix-by-vector products. These
iterative methods can successfully solve many problems from discretization of
partial differential equations. But from our experiments, we know that itera-
tive methods like the GMRES and CG and BICG don’t work well for random
sparse matrices. More precisely, these iterative methods don’t converge in a
small number of iterations for random sparse linear systems. For diagonally
dominant matrices, Jacobi’s method can be used to compute the floating point
solution with a few iterations.

We focus on diagonally dominant matrices in the rest of this section. The

and is available at http://math-atlas.sourceforge.net

9

similar idea can be used more generally, as illustrated in the following section.
An n×m matrix A = (aij) is called row diagonally dominant, if for each 1 ≤
k ≤ n, |akk| >

∑
j �=k |akj|. We call A an β-rdd matrix, if, for each 1 ≤ k ≤ n,

|akk| > β
∑

j �=k |akj|. For row diagonally dominant matrices, Jacobi’s method
is a good method to compute a floating point solution using a few matrix-by-
vector productions. This approach leads an algorithm aymptotic faster than
any previous one.

Algorithm 2 Rational solver for rdd case
Input:

• A, an m × m β-rdd integer matrix, β > 1
• b, a right hand side integer vector.

Output:

• x, the rational solution of Ax = b.

Procedure:

(1) Set integer s := � (β2+β)max(|Aii|,1≤i≤m)
β−1

�. [Note: 1
β

+ β−1
β2+β

= 2
β+1

.]

(2) Compute diagonal integer matrix P , such that Pii = � s
Aii

�. [P is the
preconditioning matrix. Solve PAx = Pb.]

(3) Set integer d(0) := 1. [The common denominator]
(4) Set integer vector r(0) := P · b; [The residual]
(5) Compute B, the Hadamard bound of det(A), which bounds the determinat

and all (m − 1) × (m − 1) minors of A.
(6) Set i := 0.
(7) Set integer α := max(2, �β+1

2
�).

(8) Set integer l := � log(2α)

log(β+1
2

)
�.

(9) Set E := sIm − PA. [Ex = sx − P · Ax. We may use E as a blackbox.]
(10) Repeat the following steps until d(i) > 2mB2(2−i||Pb||∞+||PA||∞)||P−1||∞

10.1 Set i := i + 1;
10.2 Compute rational vector x̄(i) =

∑
0≤j<l

1
sj+1 E

jr(i−1). [Note that sl · x̄(i)

is an integer vector.]

10.3 Compute integer vector x(i) := (≈ α · x̄(i)
1 , . . . ,≈ α · x̄(i)

m). [||x(i) − α ·
x̄(i)||∞ ≤ 0.5.]

10.4 Compute integer vector r(i) := α · r(i−1) − P · Ax(i).
10.5 Set integer d(i) := α · d(i−1)

(11) Set k := i
(12) Compute integer vector n(k) =

∑
1≤i≤k αk−i · x(i).

(13) Reconstruct rational solution x from 1
d(k) · n(k) using Theorem 1 with the

denominators bounded by B.
(14) return x.

10

THEOREM 3 The algorithm above will correctly compute the rational so-
lution. It requires O∼(m

log(β+1
2

)
(log ||A|| + log ||b||∞)) matrix-by-vector products

of A and O∼(m2(log ||A||+ log ||b||∞)) extra bit operations, and the total cost
is O∼(mN

log(β+1
2

)
(log ||A||+ log ||b||∞)2) bit operations, where N is the number of

non-zero entries of A.

PROOF.The algorithm above solves Ax = b by solving P ·Ax = Pb. The proof
is similar to the proof of theorem 2. Since d(i) ≥ 2i, the loop doesn’t run for-
ever. Now we prove the correctness. We need to estimate the absolute error in
each iteration. e(i) = || 1

d(i) ·n(i) −A−1b||∞, where n(i) =
∑

1≤j≤i α
i−j ·x(j) is the

numerator of the accumulated solution of the first i iterations. By induction,
we have r(i) = d(i)(Pb−P ·A 1

d(i) n
(i)). Therefore, e(i) = 1

d(i) ||A−1P−1r(i)||∞. We

need to estimate ||r(i)||∞. Let Ā = PA. We know ||r(i)||∞ = ||αr(i−1)−Āx(i)||∞
≤ ||αr(i−1) − αĀx̄(i)||∞ + ||Āαx̄(i) − Āx(i)||∞ By the choice of x(i), obviously
||x(i) − αx̄(i)||∞ ≤ 1. Thus ||r(i)||∞ ≤ α||r(i−1) − Āx̄(i)||∞ + ||A||∞. So now let
us estimate ||Āx̄(i) − r(i−1)||∞ ||Āx̄(i) − r(i−1)||∞ = ||Ā ∑

0≤j<l
1

sj+1 E
jr(i−1)i −

r(i−1)||∞ ≤ ||Ā ∑
0≤j<li 1

sj+1
Ej −Im||∞||r(i−1)i||∞ = ||(sIm−E)

∑
0≤j<l

1
sj+1 E

j−
Im||∞||r(i−1)||∞ ≤ || 1

sl E
l||∞||r(i−1)||∞ ≤ (||E||∞

s
)l||r(i−1)||∞. Now we need to es-

timate the ||E||∞. Since E = sIm−Ā, for an 1 ≤ i ≤ m,
∑

1≤j≤m |Eij| = |Eii|+∑
1≤j≤m,j �=i |Eij | ≤ |s− PiiAii|+ | 1

β
PiiAii| ≤ |Aii|+ | 1

β
s| ≤ | β−1

β2+β
s|+ | s

β
| ≤ 2s

β+1

Thus, ||E||∞ ≤ 2s
β+1

. So ||Āx̄(i) − r(i−1)||∞ ≤ (2
β+1

)l||r(i−1)||∞ ≤ 1
2α
||r(i−1)||∞.

So ||r(i)||∞ = ||αr(i−1) − Āx(i)||∞ ≤ ||0.5r(i−1)||∞ + 0.5||PA||∞. Therefore
||r(i)||∞ ≤ 2−i||Pb||∞+ ||PA||∞. Thus e(i) ≤ ||A−1||∞||P−1||∞ 1

d(i) (2
−1||Pb||∞+

||PA||∞), for i >= 1. Let us estimate ek, k is the final iteration number. Now
we know e(k)2Bdet(A) ≤ 2

d(k) ·B||det(A)A−k||∞||P−1||∞(2−k||Pb||∞+ ||PA||∞)

≤ 2mB2

d(k) · ||P−1||∞(2−k||Pb||∞ + ||PA||∞) < 1. Thus ||A−1b − 1
d(k) · n(k)||∞ =

e(k) < 1
2Bdet(A)

. and by Cramer’s rule we know det(A) ·A−1b is an integer vec-

tor, by Theorem 1, the reconstructed rational solution must be equal to A−1b.

Only the cost analysis is left. It requires at most O∼(m log ||A||+log ||b||∞) it-
erations for an input A and b, as in the dense case. In each iteration, we need to
compute x̄(i), x(i), r(i) and d(i). Since sl ·x̄(i) is a integer vector, it requires l calls
of matrix-by-vector products of E, and extra integer addition to compute it.
Each matrix-by-vector product of E requires only one matrix-by-vector prod-
uct of A with other cheaper extra work. Thus it requires O∼(m

log(β+1
2

)
(log ||A||+

log ||b||∞)) matrix-by-vector products of A and O∼(m2(log ||A|| + log ||b||∞))
extra bit operations. For updating d(i) and r(i) in each iteration, it requires
O∼(m(log ||P ||A+ log ||pb||)) bit operations. The computation of n(k) and the
final rational reconstruction requires O∼(m2(log ||A|| + log ||b||∞)) bit opera-
tions. So the total cost is O∼(mN

log(β+1
2

)
(log ||A|| + log ||b||∞)2) bit operations.

The remarks in the dense case can apply here also.

11

3.2.1 Sparse linear system experimentation

We generate some random sparse and row diagonally dominant matrices, in
which all diagonal entries are 100, 000, and each row has 10 extra randomly po-
sitioned non-zero entries which are randomly and independently chosen from
[80, 100]. Choose β = 100. Again dsolver uses the implementation of Algorithm
1, while ssolver uses the implementation of Algorithm 2.

order 200 600 1000 1400 1800 2200 2800

dslover 0.14 4.04 18.30 49.37 105.21 190.93 312.94

ssolver 0.19 4.08 17.98 46.35 98.85 163.07 275.20

These tests are run sequentially in a server with 3.2GHZ Intel Xeon processors
and 6GB memory. Clearly, algorithm 2 can take advantage of the sparsity,
saving memory and even computing time for reasonably large matrix order.

4 Quickly and exactly solve a challenge problem

I will demonstrate that our new method can be extremely much faster than
previous methods. In year 2002, Prof. L. N. Trefethen posted “The SIAM
100-Dollar, 100-Digit Challenge”. 3 Here is problem 7:

Let A be the 20, 000 × 20, 000 matrix whose entries are zero everywhere
except for the primes 2, 3, 5, 7, ..., 224737 along the main diagonal and the
number 1 in all the positions aij with |i − j| = 1, 2, 4, 8, ..., 16384. What is
the (1, 1) entry of A−1?

Though only the first 10 decimal digits is required for the original problem,
an exact solution was computed by Jean-Guillaume Dumas of LMC-IMAG
in Grenoble, France two years ago. It is a fraction with exactly 97,389 digits
each for relatively prime numerator and denominator. He ran 182 processors
for four days using LinBox software; the mathematics involved blackbox mod-
ular techniques, Wiedemann’s algorithm Wiedemann (1986), and the Chinese
remainder theorem. A couple of months later, we verified the result on one
processor supporting 64-bit architecture with a large main memory(8GB) us-
ing Dixon lifting Dixon (1982) after explicitly computing the inverse of A over
a word size prime by Gaussian elimination and storing it as a dense matrix.
See Dumas et al. (2002b) for details. Now with the main idea in this paper,
The exact answer of this problem can be computed in 25 minutes in a cheap

3 http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/hundred.html.

12

PC with Linux, 1.9GHZ Pentium processor, 1GB memory, or in 13 minutes in
a better machine with 3.2GHZ Intel Xeon processors and 6GB memory, and a
few MB memory at run time is required. This method is a mixture of algorithm
1 and algorithm 2, The general n×n matrix with same pattern of A is a sparse
matrices with O∼(n × log2(n)) non-zero entries and is an almost row diago-
nally dominant matrix except the first few rows. For the special 2000 × 2000
matrix A, there are at most 29 non-zero entries in each row. It is known that
the 500-th prime is 3571, and 3571

28
≈ 127.5. So, if we represent the matrix

as a block matrix, A =



A11 A12

A21 A22


, where A11, A12, A21, A22 are 500 × 500,

500× 19, 500, 19, 500× 500, and 19, 500× 19, 500 matrices, respectively. Then
A22 is a 127.5-rdd matrix. Let D be the diagonal part of A22, E be the rest. Let

us estimate ||A


A11 0

A21 D



−1

− I||∞ = ||(


A11 0

A21 D


 +



0 A12

0 E


)



A11 0

A21 D



−1

− I||∞

= ||


−A12D

−1A21A
−1
11 A12D

−1

−ED−1A21A
−1
11 ED−1


 ||∞. We estimate that it is less than 1

64
. So

we can use



A11 0

A21 D



−1

to approximate the inverse of A. Note that it is a

lower triangle block matrix. Thus we can solve



A11 0

A21 D


 x = y quickly, for

any y. We call LAPACK routines to compute the inverse of A11 explicitly,
and store it as a dense matrix. Other parts can be stored as sparse ma-
trices and be used as blackboxes. In the experimentation, we solve Ax =
e1 = (1, 0, · · · , 0). With algorithm 1, We choose all scalars α(i) equal to 64
and add a watch dog for the residual, that is, if the norm of residual is not
smaller than the theoretical result in each iteration, it would abort with an
error message. Only digits for x1 are stored and only x1 is reconstructed.
This method is asympotically faster than previously, and requires almost
as a small chunk of memory as totally treating the matrix as a blackbox.
Here is a brief summary of the three different successful approaches above.

13

Methods Complexity Memory Run time

Quotient of two determinants

Wiedemann’s algorithm

Chinese remainder theorem

O∼(n4) a few MB Four days in parallel

using 182 processors,

96 Intel 735 MHZ PIII, 6 1GZ

20 4 × 250MHZ sun ultra-450

Solve Ax = e1 = (1, 0, ·, 0)
by plain Dixon lifting

for the dense case

Rational reconstruction

O∼(n3) 3.2 GB 12.5 days sequentially in

a Sun Sun-Fire with

750 MHZ Ultrasparcs and

8GB for each processors

Solve Ax = e1 = (1, 0, ·, 0)
by our methods above

Rational reconstruction

O∼(n2) a few MB 25 minutes in a pc with

1.9GHZ Intel P processor,

and 1 GB memory

Clearly, our new method is quite efficient in memory and computing time.

5 Conclusion

We present a new fast algorithm to solve well conditioned linear systems with
integer coefficients over the rational field using numerical methods. It leads to
high performance implemenation in practice, and may lead to fast algorithms
for more general families of sparse linear systems.

Acknowledgement

The author would like to thank B. David Saunders for his help with this
paper. The paper couldn’t be done without his help. Also thank Prof. Folkmar
Bornemann for pointing one error and correcting it.

References

Chen, Z., Storjohann, A., 2004. An implementation of linear system solving
for integer matrices. In: Poster, ISSAC’04.

Demmel, J. W., 1997. Applied numerical linear algebra. SIAM.
Dixon, J. D., 1982. Exact solution of linear equations using p-adic expansion.

Numer. Math., 137–141.
Dumas, J., Gautier, T., Pernet, C., 2002a. Finite field linear algebra subrou-

tines. In: Proc. ISSAC’02. ACM Press, pp. 63 – 74.
Dumas, J.-G., Turner, W., Wan, Z., 2002b. Exact solution to large sparse

integer linear systems. In: Poster, ECCAD 2002.
Forsythe, G. E., Moler, C. B., 1967. Computer solution of linear algebraic

systems. Prentice-Hall.

14

Geddes, K., Zheng, W., December 2002. Exploiting fast hardware floating
point in high precision computation. Tech. rep., School of Computer Science,
University of Waterloo, CA.

Moenck, R. T., Carter, J. H., 1979. Approximate algorithms to derive exact
solutions to systems of linear equations. In: Proceedings of the International
Symposiumon on Symbolic and Algebraic Computation. Springer-Verlag,
pp. 65–73.

Pan, V., Wang, X., 2002. Acceleration of Euclidean algorithm and extensions.
In: Proc. ISSAC’02. ACM Press, pp. 207 – 213.

von zur Gathen, J., Gerhard, J., 1999. Modern Computer Algebra. Cambridge
University Press.

Wiedemann, D., 1986. Solving sparse linear equations over finite fields. IEEE
Transf. Inform. Theory IT-32, 54–62.

15

