Caroline Lasser, Ilja Klebanov

9th December 2010

Exercises 2(c) and 3 are to be handed in on Thursday, 16.12.2010, before the lecture.

Exercise 1 (Polynomial Interpolation)

The recorded report for Munich on the 6th of December 2010 showed the following values for the relative humidity:

Time	10 am	12 pm	2 pm	4 pm	6 pm
Relative Humidity	84%	91%	75%	68%	77%

What degree do you expect for the interpolating polynomial for these data? Use the Matlab functions *polyfit* and *polyval* to interpolate and plot your result.

Exercise 2 (Polynomial Interpolation)

- (a) Interpolate the function $f(x) = sin(2\pi x)$ on the interval [-1,1] by considering 20 equally spaced nodes x_1, \ldots, x_{20} (use polynomial interpolation).
- (b) Now, multiply $y_{10}=f(x_{10})$ by $(1+10^{-2})$ and interpolate this perturbed data again.
- (c) Plot your results and compare them.

Exercise 3 (Chebyshev interpolation)

- (a) Use linear transformation to scale the Chebyshev nodes from the interval [-1,1] to an arbitrary interval [a,b].
- (b) Consider Runge's function $f(x) = \frac{1}{1+x^2}$ on the interval [-5,5]. Compare the interpolation error (in the $\|.\|_{\infty}$ -norm) of equally spaced nodes to Chebyshev nodes (scaled to [-5,5], see (a)) for n=5, 10, 20, 40, where n denotes the number of nodes (use Matlab).

You may approximate the $\|.\|_{\infty}$ -norm of a function g by $\|g\|_{\infty} \approx max\{|g(a_i)| : a_i = -5 + \frac{i}{100}, i = 0, \dots, 1000\}.$