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We describe a set of algorithms (and corresponding codes) that serve as a basis
for an automated proof of existence of a certain dynamical behaviour in a given
dynamical system. In particular it is in principle possible to automatically verify
the presence of complicated dynamics using these tools. The Hénon map is used
to illustrate these techniques.

1. Introduction

The purpose of this note is to give an elementary description of an au-

tomated method for proving the existence of low dimensional dynamical

objects such as fixed points, periodic orbits, connecting orbits, or even sub-

shift dynamics of finite type for maps. We begin with a discussion of the

algorithms used. This includes the combinatorial data structures used by

the computer, how to find potential invariant sets with specific dynamic

properties, how to refine the approximation, and how to produce compu-

tationally useful index pairs. This last point leads us to the Conley index

theory 4 which is used to draw rigorous conclusions about the dynamics

from the numerical computations. To emphasize the importance of this

last point we conclude with an example in which index computations fail

to support the existence of a connecting orbit suggested by the numerical

computation. Indeed, a much finer numerical approximation shows that

such an orbit actually cannot exist.
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2. Data structures and algorithms

We are interested in proving the existence of certain invariant sets of a

continuous map f : X → R
n, where X ⊂ R

n is compact. To this end we

are going to derive a combinatorial finite state model of the dynamics of f

on X in the form of a directed graph, where the states of this model will

represent subsets of X .

A rectangular set is a subset B of R
n of the form

B = B(c, r) = {x ∈ R
n : |xk − ck| ≤ rk, k = 1, . . . , n},

where c, r ∈ R
n, rk ≥ 0, are the center and radius of B. Note that by

bisecting B with respect to the j-th coordinate direction one obtains two

rectangular sets B− = B(c−, r̂) and B+ = B(c+, r̂), where r̂j = rj/2 and

c±j = cj ± rj/2 and r̂k = rk, c±k = ck for k 6= j. A set which can be rep-

resented by iterating this subdivision process, starting with a rectangular

set X is a box. A cubical set is a finite union of boxes. Note that a binary

tree represents a certain set of boxes if one assigns a coordinate direction

to each level of the tree: the root corresponds to the box X and all nodes

of a given level correspond to a subset of a cubical grid on X 2. Denote by

Bk the collection of all boxes represented by the nodes on level k of a tree

(where the root is on level 0). For a subset B ⊂ Bk let |B| denote the union

of all boxes in B. Let o(B) be the set of all boxes in Bk which intersect |B|,

i.e. the smallest representable neighborhood of |B| in Bk.

For a given box collection B we are going to represent the dynamics of

f by a directed graph G = (B, E), where we define the set E of edges in G

to consist of all pairs (B0, B1) such that f(B0) ∩B1 6= ∅. In order to allow

for errors introduced when computing and representing the image f(B) of

a box B ∈ B on the computer, we actually make use of an enclosure of f ,

i.e. a multivalued map F : B ⇉ B such that f(B) ⊂ int |F(B)| for B ∈ B.

F can efficiently be represented as e.g. a (sparse) matrix.

2.1. Finding invariant sets

The first step in proving the existence of a certain invariant set is the con-

struction of an isolating neighborhood for f which isolates some invariant

set of interest. A rough guess for some specific invariant set of f can be ob-

tained efficiently by analyzing the matrix resp. graph F : k-periodic points

of f may be present in boxes corresponding to nonzero diagonal entries

of Fk (viewing F as a matrix), recurrent sets of f should be related to

boxes corresponding to strongly connected components of F (viewing F as
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a graph). Connecting orbits can be identified using Dijkstra’s shortest path

algorithm3.

Once a guess S̃ ⊂ B for an invariant set has been computed, we con-

struct a combinatorial isolated invariant set S containing S̃ by the following

procedure. Here Inv(S,F) denotes the maximal invariant set of F within

the set S, which can be efficiently computed7.

Algorithm 1. (Combinatorial isolating neighborhood)

S = make isolated(S̃)

S := Inv(S̃,F)

while o(S) 6⊂ S̃

S̃ := S̃ ∪ o(S)

S := Inv(S̃,F)

if S ⊂ int |o(S)| return S

else return ∅

Note that once this algorithm returns a nonempty collection S =: Sk ⊂

B ⊂ Bk of boxes, one can efficiently refine the isolating neighborhood and

obtain a tighter covering of the underlying invariant set by repeatedly (1)

subdividing the current set Sk of boxes, yielding a collection Sk+1 and (2)

discarding all boxes from Sk+1 which are not contained in Inv(Sk+1,F)2.

2.2. Computing the index

Given a cubical isolating neighborhood, the next step is to construct a

cubical index pair. We begin with an approach due to Szymczak7,8. Given

an isolated invariant set S define N1 := S ∪F(S) and N0 := N1 \ S. Then,

N = (N1, N0) := (|N1|, |N0|) is an index pair for f .

There are two considerations which prompt us to modify this construc-

tion. First, index pairs computed in this manner may be very large, es-

pecially when studying objects with high dimensional, strongly unstable

behavior. Second, computation of the index map on this pair could intro-

duce “folding effects”: The computation requires an auxiliary pair which

contains the image of the original index pair. However, the definition of

the index map demands that the inclusion of the first pair into the second

induce an isomorphism in relative homology. This property fails when the

image of a box in N0 folds back to o(S) \ N1.

In light of these considerations, we propose the following algorithm for

computing a modified combinatorial index pair. This modification, which is

sufficient for defining the Conley index1, exploits the relationship between
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the relative homology of the pair (N1, N0) and the structure of the quotient

space N1/N0. Namely, the property of excision allows us to essentially

ignore the sets outside of a neighborhood of N1 \ N0. In particular, we

construct an index pair in the combinatorial setting which truncates the

sets outside of a one box neighborhood of N1 \N0 and, furthermore, avoids

folding effects when computing the index map.

Algorithm 2. (Modified Combinatorial Index Pair)

[P1,P0] = build ip(S)

P0 := ∅

E := (F(S) ∩ o(S)) \ S

while E 6= ∅

P0 := P0 ∪ E

E := (F(P0) ∩ o(S)) \ P0

P1 := S ∪ P0

return [P1,P0]

Computation of the index map also requires an auxiliary pair [Q1,Q0]

given by Q1 := F(P1) and Q0 := Q1 \ S. Note that by construction,

[P1,P0] = [Q1∩o(S),Q0∩o(S)]. Equivalently, (|P1|, |P0|) = (|Q1|\A, |Q0|\

A) where A = |Q1 \ o(S)| ⊂ |Q0|. By excision, the inclusion map i :

[|P1|, |P0|] →֒ [|Q1|, |Q0|] induces an isomorphism i∗ in relative homology.

This property ensures that we prevent the folding effect and, therefore, may

compute the index map.

It is worth noting that given a cubical grid, the pair given by Algorithm 2

is, in many ways, optimal for studying the dynamics on S. Both sets in the

pair are contained in o(S), the minimal box collection one should expect to

consider when studying the dynamics on |S|. In addition, this pair is just

large enough to ensure that folding is avoided in computing the index.

Given a modified combinatorial index pair [P1,P0] for the map F , we

compute its index using a software package developed in the Computational

Homology Program5 (see www.math.gatech.edu/∼chom).

3. A numerical example: The Hénon Map

Consider the map f(x, y) = (1 − ax2 + y/5, 5bx), with parameter values

a = 1.3 and b = 0.2. We apply the previously described procedure in order

to prove the existence of an invariant set on which f exhibits complicated

dynamics. Based on the results of a simulation with initial point (0, 0) we

fix the box X with center (0.1767, 0.1767) and radius (1.1078, 1.1078) as
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the state space for further investigation. We choose to compute a covering

of the maximal invariant set of f up to level 16 of the tree, resulting in a

collection of 1188 boxes. We compute guesses for the location of a period

two point, a period four point as well as connecting orbits between these

two. Applying Algorithms 1 and 2 to this guess results in an isolating

neighborhood S consisting of 14 distinct components and the associated

modified combinatorial index pair shown in Figure 1. The homology of this

pair is H∗(|P1|, |P0|) ∼= (0, Z
15, 0, 0, . . .) with the index map hP,1 on level

one given by the transition graph in Figure 1(c).

(a) (b) (c)

Figure 1. (a) An index pair [P1,P0] for a guess of two orbits connecting a period 2
orbit and a period 4 orbit for the Hénon map. The 14 components of S = cl (P1 \ P0)
are labeled A through N . (b) The transition graph T representing the multivalued map
H on the 14 components of S. (c) The transition graph (with orientations) representing
hP,1, the index map on level one. The 15 generators are labeled by their locations in the
components of S.

Theorem 3.1. There is a set contained in |S|, on which f is semi-

conjugate to the symbol subshift given by the transition graph T shown in

Figure 1(b).

Proof. Let Σ = {(Zi)i∈Z | Zi ∈ {A, B, . . . , N}} and let σ : Σ →

Σ be the shift map. Consider the subset, Σ∗ = {(Zi)i ∈ Σ |

(Zi, Zi−1) is an edge in T } which is the closure of periodic orbits given in

the transition graph T . Define ρ : |P1| → Σ∗ by ρ(x) = (Zi)i∈Z, where Zi
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is the connected component of |P1| containing f i(x), i ∈ Z. A result of 6

allows us to decompose the index information into maps on the connected

components of |P1|. Let hZ∗, Z ∈ {A, . . . , N}, be the index map obtained

from hP,∗ by projecting onto the connected component Z.

If the Lefschetz number of hZ1∗◦ . . .◦hZn∗ is not 0, then a periodic orbit

under f through the ordered components Z1, . . . , Zn exists. Given that the

homology on all other levels is 0, the Lefschetz number is nonzero provided

that the trace of the composition of restricted index maps for H1(|P1|, |P0|)

is nonzero. This can be shown for the composition of restricted index maps

for any periodic sequence given by the transition graph in Figure 1(b). By

extension, ρ maps onto Σ∗. Therefore, ρ is a semi-conjugacy between f on

the (nonempty) invariant set contained in |S| = |P1| \ |P0| and the shift

map σ on Σ∗.

3.1. The transition matrix versus algebraic topology

Using similar techniques to those previously described, we constructed the

map F on a box collection at level 14. The map suggests the existence of

a connecting orbit from a period two orbit to a fixed point. However, the

associated index computations did not support the existence of this orbit for

f . Therefore we repeated the computation at level 24, where the fixed point

and the period two orbit (which may be shown to exist by computation of

the index at depth 14) persist as expected. However, the map F itself on

the box collection of this level prohibits a connecting orbit.
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