Solutions to Worksheet 3

Exercise 1:

For the first exercise recall that the Taylor-Expansion of f(x+h) around f(x) is given by

$$f(x+h) = \sum_{i=0}^{N} \frac{h^{i}}{i!} f^{(i)}(x) + \mathcal{O}(h^{N+1}).$$
 (0.1)

• In the beginning we fix the second component and write down the Taylor expansion of f(x+h) and f(x-h) up to third order:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \mathcal{O}(h^4)$$
$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(x) + \mathcal{O}(h^4)$$

So, if we sum up both expressions, terms with odd power in h will cancel out.

$$f(x+h) + f(x-h) = 2f(x) + h^2 f''(x) + \mathcal{O}(h^4)$$

Solving the equation to f''(x) leads to the given approximation.

$$h^{2}f''(x) = f(x+h) + f(x-h) - 2f(x) + \mathcal{O}(h^{4})$$
$$f''(x) = \frac{f(x+h) + f(x-h) - 2f(x)}{h^{2}} + \mathcal{O}(h^{2})$$

The same holds true for partial derivatives, i.e.

$$\frac{\partial^2 f}{\partial x^2}(x,y) = \frac{f(x+h,y) + f(x-h,y) - 2f(x,y)}{h^2} + \mathcal{O}(h^2).$$

For the Laplacian, this means

$$\Delta f = \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right)(x, y)$$

$$= \frac{f(x+h, y) + f(x-h, y) - 2f(x, y)}{h^2} + \frac{f(x, y+h) + f(x, y-h) - 2f(x, y)}{h^2} + \mathcal{O}(h^2)$$

$$= \frac{1}{h^2} (f(x+h, y) + f(x, y+h) + f(x-h, y) + f(x, y-h) - 4f(x, y)) + \mathcal{O}(h^2)$$
(0.3)

• To deduce an "Order 4"-method, we proceed as in the previous case. We start again with Taylor expansion.

$$\begin{split} f(x+h) &= f(x) + hf^{(1)}(x) + \frac{h^2}{2}f^{(2)}(x) + \frac{h^3}{6}f^{(3)}(x) + \frac{h^4}{24}f^{(4)}(x) + \frac{h^5}{120}f^{(5)}(x) + \mathcal{O}(h^6) \\ f(x-h) &= f(x) - hf^{(1)}(x) + \frac{h^2}{2}f^{(2)}(x) - \frac{h^3}{6}f^{(3)}(x) + \frac{h^4}{24}f^{(4)}(x) - \frac{h^5}{120}f^{(5)}(x) + \mathcal{O}(h^6) \\ f(x+2h) &= f(x) + 2hf^{(1)}(x) + 2h^2f^{(2)}(x) + \frac{4}{3}h^3f^{(3)}(x) + \frac{2}{3}h^4f^{(4)}(x) + \frac{4}{15}h^5f^{(5)}(x) + \mathcal{O}(h^6) \\ f(x-2h) &= f(x) - 2hf^{(1)}(x) + 2h^2f^{(2)}(x) - \frac{4}{3}h^3f^{(3)}(x) + \frac{2}{3}h^4f^{(4)}(x) - \frac{4}{15}h^5f^{(5)}(x) + \mathcal{O}(h^6) \end{split}$$

We sum again up the expressions for " $\pm h$ " to cancel out all terms with odd order in h,

$$f(x+h) + f(x-h) = 2f(x) + h^2 f^{(2)}(x) + \frac{1}{12} h^4 f^{(4)}(x) + \mathcal{O}(h^6),$$

$$f(x+2h) + f(x-2h) = 2f(x) + 4h^2 f^{(2)}(x) + \frac{4}{3} h^4 f^{(4)}(x) + \mathcal{O}(h^6).$$

The last step is to add up both sums such that the fourth derivative vanishes.

$$16(f(x+h)+f(x-h)) - (f(x+2h)+f(x-2h)) = 30f(x)+12h^2f^{(2)}(x) + \mathcal{O}(h^6)$$

$$12h^2f^{(2)}(x) = 16(f(x+h)+f(x-h)) - (f(x+2h)+f(x-2h)) - 30f(x) + \mathcal{O}(h^6)$$

$$f^{(2)}(x) = \frac{1}{h^2}(\frac{4}{3}(f(x+h)+f(x-h)) - \frac{1}{12}(f(x+2h)+f(x-2h)) - \frac{5}{2}f(x)) + \mathcal{O}(h^4)$$

Using this results for both partial derivatives $\frac{\partial^2}{\partial x^2} f$ and $\frac{\partial^2}{\partial y^2} f$ the nine-point stencil of the Laplacian reads

$$\begin{split} \Delta f = & (\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2})(x, y) \\ \approx & \frac{1}{h^2} \left(\frac{4}{3} (f(x+h, y) + f(x, y+h) + f(x-h, y) + f(x, y-y)) \right. \\ & \left. - \frac{1}{12} (f(x+2h, y) + f(x, y+2h) + f(x-2h, y) + f(x, y-2h)) - 5f(x, y) \right). \end{split}$$

• We are given the function $u(x,y) = e^{\pi x} \sin(\pi y) + 0.5(xy)^2$. Inserting the given value shows that u satisfies on the boundary

$$u(0, y) = \sin(\pi y),$$

 $u(x, 0) = 0,$
 $u(1, y) = e^{\pi} \sin(\pi y) + 0.5y^{2},$
 $u(x, 1) = 0.5x^{2}.$

Moreover, the derivatives of u are

$$u_x(x,y) = \pi e^{\pi x} \sin(\pi y) + xy^2,$$

$$u_y(x,y) = \pi e^{\pi x} \cos(\pi y) + x^2 y,$$

$$u_{xx}(x,y) = \pi^2 e^{\pi x} \sin(\pi y) + y^2,$$

$$u_{yy}(x,y) = \pi^2 e^{\pi x} (-\sin(\pi y)) + x^2.$$

So the Laplacian satisfies

$$\Delta u = (u_{xx} + u_{yy})(x, y) = x^2 + y^2$$

and u is the solution of the boundary value problem.

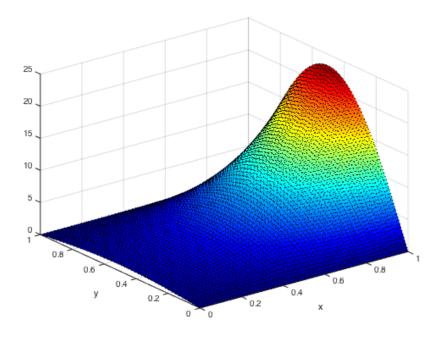


Figure 0.1: The solution u on the domain $\Omega = [0; 1] \times [0; 1]$

Exercise 2:

In the second exercise we want to compare the solution of a Poisson problem with its approximated solution via 5-point-stencil.

Continuous problem	Discrete problem	
$\Delta u = f$ on Ω	$\Delta_h u_h = f$, on Ω_h	(0.5)
$u = g \text{ on } \partial\Omega$	$u_h = g$, on $\partial \Omega_h$	

• We start with the discrete maximum principle and show that a function v_h with $\Delta_h v_h \geq 0$ attains its maximum at the border. Recall that we define the "discrete Laplacian" via the five-point-stencil from Exercise 1,

$$\Delta_h v_h(x,y) = \frac{1}{h^2} (v_h(x+h,y) + v_h(x,y+h) + v_h(x-h,y) + v_h(x,y-h) - 4v_h(x,y)) \ge 0 \quad (0.6)$$

for all inner points $(x,y) \in \Omega_h$. We can rewrite this inequality in the form

$$v_h(x,y) \le \frac{1}{4}(v_h(x+h,y) + v_h(x,y+h) + v_h(x-h,y) + v_h(x,y-h)),$$

so the value at any inner point is bounded from above by the mean of the four points surrounding it. Naturally, at least one of the four values $v_h(x+h,y)$, $v_h(x,y+h)$, $v_h(x-h,y)$ or $v_h(x,y-h)$ has to be as large as $v_h(x,y)$. Hence, $v_h(x,y)$ can not be the global maximum. We can also proof this observation formally by contradiction. Assume that $(x^*,y^*) \in \Omega_h$ is an inner point such that

$$v_h(x^*, y^*) > v_h(x, y) \quad \forall \ (x, y) \in \Omega_h \cup \partial \Omega_h.$$

Then, in particular, $v_h(x^*, y^*) > v_h(x^* + h, y^*), v_h(x^*, y^*) > v_h(x^* - h, y^*)$ etc., so

$$4v_h(x^*, y^*) > v_h(x^* + h, y^*) + v_h(x^*, y^* + h) + v_h(x^* - h, y^*) + v_h(x^*, y^* - h).$$

This is equivalent to $\Delta_h v_h(x^*, y^*) < 0$ which is a contradiction to our primary assumption.

• The proof follows completely analogous to the previous proof. Assume that v_h has an absolute minimum at $(x^*, y^*) \in \Omega_h$, i.e.

$$v_h(x^*, y^*) < v_h(x, y) \quad \forall \ (x, y) \in \Omega_h \cup \partial \Omega_h.$$

Then,

$$v_h(x^*, y^*) < \frac{1}{4}(v_h(x^* + h, y^*) + v_h(x^*, y^* + h) + v_h(x^* - h, y^*) + v_h(x^*, y^* - h)).$$

This again implies $\Delta_h v_h(x^*, y^*) > 0$, what is a contradiction to $\Delta_h v_h(x, y) \leq 0$ for all $(x, y) \in \Omega_h$. So, the global minimum can not be attained in Ω_h .

• To show uniqueness of the solution, we use the hint and suppose that there are two solutions u_h^1 and u_h^2 with

$$\Delta_h u_h^1 = f \text{ on } \Omega_h
u_h^1 = g \text{ on } \partial \Omega_h$$

$$\Delta_h u_h^2 = f \text{ on } \Omega_h,
u_h^2 = g \text{ on } \partial \Omega_h.$$
(0.7)

We have to show that $u_h^1 - u_h^2 \equiv 0$. We start with the Poisson problem for $u_h^1 - u_h^2$. We know that the difference $u_h^1 - u_h^2$ satisfies

$$\Delta_h(u_h^1 - u_h^2) = 0 \text{ on } \Omega_h,$$

$$u_h^1 - u_h^2 = 0 \text{ on } \partial \Omega_h.$$

Due to both previous results, we know that $u_h^1 - u_h^2$ attain its minimum and its maximum at the boundary $\partial \Omega_h$. But since $u_h^1 - u_h^2 = 0$ at the boundary, it follows that

$$u_h^1 - u_h^2 \equiv 0$$
 on Ω_h .

So, the solution to the boundary value problem is unique.

 \bullet So far, we have shown that the five-stencil-approximation has a unique solution. Next, we want to give an estimate for this solution based on f and g. Again, we start with the hint and consider the function

$$u_h = v_h + M_f \phi = v_h + \max_{\Omega_h} |f| \phi$$

with $\phi: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto \frac{1}{4} \left[(x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 \right]$. To estimate Δv_h we calculate the Laplacian of u_h ,

$$\Delta u_h = \Delta v_h + M_f = f + M_f$$

with $\phi_{xx} = \frac{1}{2}$ and $\phi_{yy} = \frac{1}{2}$. To use again the maximum principle, we require

$$\Delta u_h \geq 0$$
,

but this holds true since $M_f = \max_{\Omega_h} |f| \ge f$. So, $\max_{\Omega_h} u_h \le \max_{\partial \Omega_h} u_h$ and it suffices to evaluate u_h at the boundary. We have

$$u_h = g + M_f \phi$$

at $\partial \Omega_h$ and thus,

$$\max_{\Omega_h} u_h \le \max_{\partial \Omega_h} u_h \le \max_{\partial \Omega_h} |g| + \frac{1}{8} M_f.$$

We used that ϕ attains its maximum on the unit square at the vertices $\phi(0,0) = \phi(1,0) = \phi(0,1) = \phi(1,1) = \frac{1}{8}$.

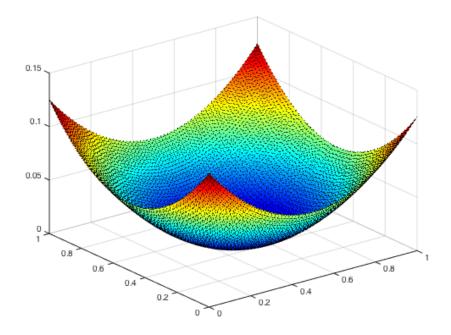


Figure 0.2: ϕ on the domain $\Omega = [0; 1] \times [0; 1]$

• As a last step we want to give an estimate for the error $|u-u_h|$ and show that the approximated solution u_h converges to u as $h \to 0$.

We extend the previous estimate to make a statement about the accuracy of the approximated solution.

Let u denote the solution of the continuous problem, i.e.

$$\Delta u = f \text{ on } \Omega, \quad u = g \text{ on } \partial \Omega,$$
 (0.8)

while u_h is the solution to the discrete problem

$$\Delta_h u_h = f \text{ on } \Omega_h, \quad u_h = g \text{ on } \partial \Omega_h.$$
 (0.9)

Then, the difference $u - u_h$ satisfies

$$\Delta_h(u - u_h) = K \text{ on } \Omega_h, \quad u - u_h = 0 \text{ on } \partial\Omega_h$$
 (0.10)

with $K = \Delta_h u - \Delta_h u_h = \Delta_h u - f = \Delta_h u - \Delta u$. With Equation (3) from the worksheet, we conclude

$$\max_{\Omega_h} |u - u_h| \le \frac{1}{8} \max_{\Omega_h} |K| = \frac{1}{8} \max_{\Omega_h} |\Delta_h u - \Delta u|.$$

• Since the five-point-stencil is an method of accuracy $\mathcal{O}(h^2)$, we have

$$|\Delta_h u - \Delta u| \le Ch^2 \tag{0.11}$$

by definition. Thus, we get

$$\max_{\Omega_h} |u - u_h| \le Ch^2$$

and taking the limit $h \to 0$ leads to

$$\lim_{h \to 0} |u - u_h| \le \lim_{h \to 0} \max_{\Omega_h} |u - u_h| \le 0.$$

Since we take the limit of the absolute value, this is equal to $\lim_{h\to 0} |u-u_h| = 0$.