
Numerical Programming 2 (CSE) 2015

Solutions to Worksheet 3

Exercise 1:
For the first exercise recall that the Taylor-Expansion of f(x+ h) around f(x) is given by

f(x+ h) =
N∑
i=0

hi

i! f
(i)(x) +O(hN+1). (0.1)

• In the beginning we fix the second component and write down the Taylor expansion of f(x+h)
and f(x− h) up to third order:

f(x+ h) = f(x) + hf ′(x) + h2

2 f
′′(x) + h3

6 f
′′′(x) +O(h4)

f(x− h) = f(x)− hf ′(x) + h2

2 f
′′(x)− h3

6 f
′′′(x) +O(h4)

So, if we sum up both expressions, terms with odd power in h will cancel out.

f(x+ h) + f(x− h) = 2f(x) + h2f ′′(x) +O(h4)

Solving the equation to f ′′(x) leads to the given approximation.

h2f ′′(x) = f(x+ h) + f(x− h)− 2f(x) +O(h4)

f ′′(x) = f(x+ h) + f(x− h)− 2f(x)
h2 +O(h2)

The same holds true for partial derivatives, i.e.

∂2f

∂x2 (x, y) = f(x+ h, y) + f(x− h, y)− 2f(x, y)
h2 +O(h2).

For the Laplacian, this means

∆f = (∂
2f

∂x2 + ∂2f

∂y2 )(x, y) (0.2)

= f(x+ h, y) + f(x− h, y)− 2f(x, y)
h2 + f(x, y + h) + f(x, y − h)− 2f(x, y)

h2 +O(h2)
(0.3)

= 1
h2 (f(x+ h, y) + f(x, y + h) + f(x− h, y) + f(x, y − h)− 4f(x, y)) +O(h2) (0.4)

• To deduce an "Order 4"-method, we proceed as in the previous case. We start again with
Taylor expansion.

f(x+ h) = f(x) + hf (1)(x) + h2

2 f
(2)(x) + h3

6 f
(3)(x) + h4

24f
(4)(x) + h5

120f
(5)(x) +O(h6)

f(x− h) = f(x)− hf (1)(x) + h2

2 f
(2)(x)− h3

6 f
(3)(x) + h4

24f
(4)(x)− h5

120f
(5)(x) +O(h6)

f(x+ 2h) = f(x) + 2hf (1)(x) + 2h2f (2)(x) + 4
3h

3f (3)(x) + 2
3h

4f (4)(x) + 4
15h

5f (5)(x) +O(h6)

f(x− 2h) = f(x)− 2hf (1)(x) + 2h2f (2)(x)− 4
3h

3f (3)(x) + 2
3h

4f (4)(x)− 4
15h

5f (5)(x) +O(h6)
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We sum again up the expressions for "±h" to cancel out all terms with odd order in h,

f(x+ h) + f(x− h) = 2f(x) + h2f (2)(x) + 1
12h

4f (4)(x) +O(h6),

f(x+ 2h) + f(x− 2h) = 2f(x) + 4h2f (2)(x) + 4
3h

4f (4)(x) +O(h6).

The last step is to add up both sums such that the fourth derivative vanishes.

16(f(x+ h) + f(x− h))− (f(x+ 2h) + f(x− 2h)) = 30f(x) + 12h2f (2)(x) +O(h6)
12h2f (2)(x) = 16(f(x+ h) + f(x− h))− (f(x+ 2h) + f(x− 2h))− 30f(x) +O(h6)

f (2)(x) = 1
h2 (4

3(f(x+ h) + f(x− h))− 1
12(f(x+ 2h) + f(x− 2h))− 5

2f(x)) +O(h4)

Using this results for both partial derivatives ∂2

∂x2 f and ∂2

∂y2 f the nine-point stencil of the
Laplacian reads

∆f =(∂
2f

∂x2 + ∂2f

∂y2 )(x, y)

≈ 1
h2

(4
3(f(x+ h, y) + f(x, y + h) + f(x− h, y) + f(x, y − y))

− 1
12(f(x+ 2h, y) + f(x, y + 2h) + f(x− 2h, y) + f(x, y − 2h))− 5f(x, y)

)
.

• We are given the function u(x, y) = eπx sin(πy) + 0.5(xy)2. Inserting the given value shows
that u satisfies on the boundary

u(0, y) = sin(πy),
u(x, 0) = 0,
u(1, y) = eπ sin(πy) + 0.5y2,

u(x, 1) = 0.5x2.

Moreover, the derivatives of u are

ux(x, y) = πeπx sin(πy) + xy2,

uy(x, y) = πeπx cos(πy) + x2y,

uxx(x, y) = π2eπx sin(πy) + y2,

uyy(x, y) = π2eπx(− sin(πy)) + x2.

So the Laplacian satisfies

∆u = (uxx + uyy)(x, y) = x2 + y2

and u is the solution of the boundary value problem.
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Figure 0.1: The solution u on the domain Ω = [0; 1]× [0; 1]

Exercise 2:
In the second exercise we want to compare the solution of a Poisson problem with its approximated
solution via 5-point-stencil.

Continuous problem Discrete problem
∆u = f on Ω ∆huh = f, on Ωh

u = g on ∂Ω uh = g, on ∂Ωh

(0.5)

• We start with the discrete maximum principle and show that a function vh with ∆hvh ≥ 0
attains its maximum at the border. Recall that we define the "discrete Laplacian" via the
five-point-stencil from Exercise 1,

∆hvh(x, y) = 1
h2 (vh(x+h, y) + vh(x, y+h) + vh(x−h, y) + vh(x, y−h)− 4vh(x, y)) ≥ 0 (0.6)

for all inner points (x, y) ∈ Ωh. We can rewrite this inequality in the form

vh(x, y) ≤ 1
4(vh(x+ h, y) + vh(x, y + h) + vh(x− h, y) + vh(x, y − h)),

so the value at any inner point is bounded from above by the mean of the four points sur-
rounding it. Naturally, at least one of the four values vh(x+ h, y), vh(x, y+ h), vh(x− h, y) or
vh(x, y − h) has to be as large as vh(x, y). Hence, vh(x, y) can not be the global maximum.
We can also proof this observation formally by contradiction. Assume that (x∗, y∗) ∈ Ωh is an
inner point such that

vh(x∗, y∗) > vh(x, y) ∀ (x, y) ∈ Ωh ∪ ∂Ωh.

Then, in particular, vh(x∗, y∗) > vh(x∗ + h, y∗), vh(x∗, y∗) > vh(x∗ − h, y∗) etc., so

4vh(x∗, y∗) > vh(x∗ + h, y∗) + vh(x∗, y∗ + h) + vh(x∗ − h, y∗) + vh(x∗, y∗ − h).

This is equivalent to ∆hvh(x∗, y∗) < 0 which is a contradiction to our primary assumption.
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• The proof follows completely analogous to the previous proof. Assume that vh has an absolute
minimum at (x∗, y∗) ∈ Ωh, i.e.

vh(x∗, y∗) < vh(x, y) ∀ (x, y) ∈ Ωh ∪ ∂Ωh.

Then,

vh(x∗, y∗) < 1
4(vh(x∗ + h, y∗) + vh(x∗, y∗ + h) + vh(x∗ − h, y∗) + vh(x∗, y∗ − h)).

This again implies ∆hvh(x∗, y∗) > 0, what is a contradiction to ∆hvh(x, y) ≤ 0 for all (x, y) ∈
Ωh. So, the global minimum can not be attained in Ωh.

• To show uniqueness of the solution, we use the hint and suppose that there are two solutions
u1
h and u2

h with

∆hu
1
h = f on Ωh ∆hu

2
h = f on Ωh,

u1
h = g on ∂Ωh u2

h = g on ∂Ωh.
(0.7)

We have to show that u1
h − u2

h ≡ 0. We start with the Poisson problem for u1
h − u2

h. We know
that the difference u1

h − u2
h satisfies

∆h(u1
h − u2

h) = 0 on Ωh,

u1
h − u2

h = 0 on ∂Ωh.

Due to both previous results, we know that u1
h − u2

h attain its minimum and its maximum at
the boundary ∂Ωh. But since u1

h − u2
h = 0 at the boundary, it follows that

u1
h − u2

h ≡ 0 on Ωh.

So, the solution to the boundary value problem is unique.

• So far, we have shown that the five-stencil-approximation has a unique solution. Next, we
want to give an estimate for this solution based on f and g. Again, we start with the hint and
consider the function

uh = vh +Mfφ = vh + max
Ωh

|f |φ

with φ : R2 7→ R, (x, y) 7→ 1
4

[
(x− 1

2)2 + (y − 1
2)2
]
. To estimate ∆vh we calculate the Laplacian

of uh,
∆uh = ∆vh +Mf = f +Mf

with φxx = 1
2 and φyy = 1

2 . To use again the maximum principle, we require

∆uh ≥ 0,

but this holds true since Mf = max
Ωh

|f | ≥ f . So, max
Ωh

uh ≤ max
∂Ωh

uh and it suffices to evaluate
uh at the boundary. We have

uh = g +Mfφ

at ∂Ωh and thus,
max
Ωh

uh ≤ max
∂Ωh

uh ≤ max
∂Ωh

|g|+ 1
8Mf .

We used that φ attains its maximum on the unit square at the vertices φ(0, 0) = φ(1, 0) =
φ(0, 1) = φ(1, 1) = 1

8 .
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Figure 0.2: φ on the domain Ω = [0; 1]× [0; 1]

• As a last step we want to give an estimate for the error |u−uh| and show that the approximated
solution uh converges to u as h→ 0.
We extend the previous estimate to make a statement about the accuracy of the approximated
solution.
Let u denote the solution of the continuous problem, i.e.

∆u = f on Ω, u = g on ∂Ω, (0.8)

while uh is the solution to the discrete problem

∆huh = f on Ωh, uh = g on ∂Ωh. (0.9)

Then, the difference u− uh satisfies

∆h(u− uh) = K on Ωh, u− uh = 0 on ∂Ωh (0.10)

with K = ∆hu −∆huh = ∆hu − f = ∆hu −∆u. With Equation (3) from the worksheet, we
conclude

max
Ωh

|u− uh| ≤
1
8max

Ωh

|K| = 1
8max

Ωh

|∆hu−∆u|.

• Since the five-point-stencil is an method of accuracy O(h2), we have

|∆hu−∆u| ≤ Ch2 (0.11)

by definition. Thus, we get
max
Ωh

|u− uh| ≤ Ch2

and taking the limit h→ 0 leads to

lim
h→0
|u− uh| ≤ lim

h→0
max
Ωh

|u− uh| ≤ 0.

Since we take the limit of the absolute value, this is equal to lim
h→0
|u− uh| = 0.

5


