Numerical Programming 2 (CSE) 2015

Solutions to Worksheet 3

Exercise 1:
For the first exercise recall that the Taylor-Expansion of f(z + h) around f(x) is given by

N B
fa+h) =3 ﬁf(l) (z) + OB+, (0.1)
=0

e In the beginning we fix the second component and write down the Taylor expansion of f(x+h)
and f(x — h) up to third order:

2 3
Flo+h) = F(2) 4 h7' () + o () + 1)+ O(n)
h3

= "(2) + O(?)

Fo=h) = f@) = hf'(@) + (@)
So, if we sum up both expressions, terms with odd power in h will cancel out.
fla+h)+ f(z—h) =2f(z) + B f"(x) + O(h*)
Solving the equation to f”(x) leads to the given approximation.
W2 f"(x) = f(z+h) + f(zx — h) = 2f(2) + O(h")

f//(x) _ f(x"’_h) +f(hx2_ h) — 2f(1:) +O(h2)

The same holds true for partial derivatives, i.e.

0?2 x+ h, z—h,y) — 2f(x,
3752(”5’3‘/) _ flet y)+f(h2 y) —2f(z,y) + oY),
For the Laplacian, this means
0? 0?
Af = (5% + 5 5)w) 02
_ f(x"i_h’ay)""f(xh;hvy) _2f($7y) + f(m,y—l—h)—l—f(:c}';zy—h)—2f(ac,y) —|—O(h2)
(0.3)
= (et by + fey + )+ F = hoy) + [y — ) = 4f(5,9) + O0F)  (0.4)

e To deduce an "Order 4"-method, we proceed as in the previous case. We start again with
Taylor expansion.

B = O @ e W 6) ) 1 O
fla+h) = f@) +hf (@) + 5 7)) + o @) + 5 (@) + 55 7 (@) + O(R7)

Fla—h) = F@) = hfO (@) + 2 @ @) = 50 0y L I gy - B o0 4 o)
- 2 6 24 120
flx+2h) = f(z) + 2nfD(x) + 2n2 fP(z) + gh?’ F3 () + §h4 F () + %fﬁ O (@) + O(hS)

Flo = 2h) = (&) — 200 () + 202 O ) = 5K FO (@) + S0 D @) — 07O (w) + O(0)



We sum again up the expressions for "+h" to cancel out all terms with odd order in A,
Fla+ )+ fla—h) = 2f(x) + RO (@) + o T (@) + O(RS),
£l 20) + (o — 20) = 2f(2) + 421D (@) + SH (@) + O(H0)
The last step is to add up both sums such that the fourth derivative vanishes.

16(f(x+ h) + f(xz —h)) — (f(z + 2h) + f(x —2h)) = 30f(z) + 12k%f P (z) + O(KS)
1202 (2) = 16(f (x + h) + f(z — h)) — (f(z + 2h) + f(z — 2h)) — 30f(x) + O(hS)

FO() = 7 (S h)+ (= 1) = o (F(+ 2h) + Fo = 21)) — 2 f (@) + O(KY)

Ll

Using this results for both partial derivatives 88722 f and g—; f the nine-point stencil of the
Laplacian reads

0? 0?
Af (5 + G )
1

~oz (FU G+ )+ foy + )+ fo = hy) + f(oy — )

~ 5+ 2hy) + oy + 20) + @ = o) + Flay — 20)) = 5f(w.9)).

We are given the function u(z,y) = €™ sin(ry) + 0.5(xy)?. Inserting the given value shows
that u satisfies on the boundary

u(0,y) = sin(my),

u(z,0) =0,

u(1,y) = " sin(my) + 0.5y,
u(z,1) = 0.52>

Uy (x,y) = me™ sin(my) +J:y ,

uy(z,y) = me™ cos(my) + 2%y,
Uge (1, ) = 2™ sin(my) + v,
Uyy(,y) = 72e™ (= sin(my)) + 2*.

So the Laplacian satisfies
Au = (Ugy + uyy) (2, y) = 2% + 42

and u is the solution of the boundary value problem.



Figure 0.1: The solution w on the domain Q = [0; 1] x [0; 1]

Exercise 2:
In the second exercise we want to compare the solution of a Poisson problem with its approximated
solution via 5-point-stencil.

Continuous problem Discrete problem
Au = f on Apup, = f, on Qp (0.5)
u = g on 0f) up = g, on 02

e We start with the discrete maximum principle and show that a function v, with Apv, > 0
attains its maximum at the border. Recall that we define the "discrete Laplacian" via the
five-point-stencil from Exercise 1,

1
Apvp(z,y) = ﬁ(vh(fﬁrh,y) +op(x,y+h)+op(x—h,y) +op(x,y —h) —4vp(x,y)) >0 (0.6)

for all inner points (x,y) € ;. We can rewrite this inequality in the form

1
vp(z,y) < Z(Uh(x + h,y) +op(z,y + h) +vp(x — h,y) + vp(z,y — h)),

so the value at any inner point is bounded from above by the mean of the four points sur-
rounding it. Naturally, at least one of the four values vy (z + h,y), vp(z,y + h), vp(x — h,y) or
vp(x,y — h) has to be as large as vy (x,y). Hence, vx(x,y) can not be the global maximum.
We can also proof this observation formally by contradiction. Assume that (z*,y*) € Qp, is an
inner point such that

’Uh(-'E*,y*) > ’Uh(!E,Z/) v (Z’,y) € Qh U 8Qh
Then, in particular, vy (x*, y*) > vp(z* + h, y*), vp(x*, y*) > vp(x* — h, y*) etc., so
4vh(x*7 y*) > Uh(x* + h:y*) + ’Uh<m*7y* + h) + Uh(.%'* - h7 y*) + ’Uh(x*, y* - h)

This is equivalent to Apvp(x*,y*) < 0 which is a contradiction to our primary assumption.



e The proof follows completely analogous to the previous proof. Assume that vy, has an absolute
minimum at (z*,y*) € Qp, ie.

vp (2%, ") < oplz,y) VYV (z,y) € Qp UOQ,.

Then,

* * 1 * * * * * * * *
vp(z*,y") < Z(Uh(a? + h,y*) +op(z*, ¥ + h) +op(a” — h,y") Fop(z®, ¥ — h)).

This again implies Apvp(2z*, y*) > 0, what is a contradiction to Apvp(x,y) <0 for all (z,y) €
Q. So, the global minimum can not be attained in €2,.

e To show uniqueness of the solution, we use the hint and suppose that there are two solutions
u}l and u,% with
Apuj, = f on Apui = f on Qy,

0.7
uj, = g on 0y, ui = g on I, 07

We have to show that u,lZ — u% = 0. We start with the Poisson problem for u}L — U%, We know
that the difference uj — u? satisfies
Ap(up —u3) =0 on Qp,
up —ui =0 on I,.
Due to both previous results, we know that u,lZ — u% attain its minimum and its maximum at
the boundary 0. But since u}L — u% = 0 at the boundary, it follows that

up —ui =0 on Q.

So, the solution to the boundary value problem is unique.

e So far, we have shown that the five-stencil-approximation has a unique solution. Next, we
want to give an estimate for this solution based on f and g. Again, we start with the hint and
consider the function

up, th+Mf¢=vh+HS1iX | flé

with ¢ : R? = R, (2,y) —
of Up,,
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7)2} . To estimate Awvy, we calculate the Laplacian

Auh:Avh—i—Mf:f—i—Mf

with ¢z, = % and ¢,y = % To use again the maximum principle, we require
AUJh > Oa

but this holds true since My = max |fl > f. So, max up < max up and it suffices to evaluate
h h h

up, at the boundary. We have
up =g+ Mo

at 9, and thus,

8

We used that ¢ attains its maximum on the unit square at the vertices ¢(0,0) = ¢(1,0) =
$(0,1) = ¢(1,1) = %.

1
max up < max up < max |g| + < Mjy.
Q) 50, a0,
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Figure 0.2: ¢ on the domain Q = [0;1] x [0;1]

e Asa last step we want to give an estimate for the error |u—uy,| and show that the approximated
solution uy, converges to v as h — 0.
We extend the previous estimate to make a statement about the accuracy of the approximated
solution.
Let u denote the solution of the continuous problem, i.e.

Au= fonQ, u=gond, (0.8)
while uy, is the solution to the discrete problem
Apup = fon Qp,  up =g on 09y,. (0.9)
Then, the difference u — uy, satisfies
Ap(u—up) =K on Qp, u—up=0on0dQ, (0.10)

with K = Apu — Apup, = Apu — f = Apu — Au. With Equation (3) from the worksheet, we
conclude ! !
Hslzix‘u —up| < grrsllzzx|K| = grrsllzzx|Ahu — Aul.

e Since the five-point-stencil is an method of accuracy O(h?), we have

|Apu — Au| < Ch? (0.11)

by definition. Thus, we get
max|u — up| < Ch?
Qp

and taking the limit h — 0 leads to

lim |u — up| < limmax|u — up| < 0.
h—0 h—0 Qp

Since we take the limit of the absolute value, this is equal to }Lin%) |lu — up| = 0.
—



