Numerical Programming 2 (CSE) 2015

Solutions to Worksheet 6

Exercise 2:
The formal Fourier series of a function f € L?([0;1]) is given by

= Z e’ (0.1)
keZ

To approximate the solution of the differential equation

'(2) + y(x) = ) (0.2)

with the FFT we use as ansatz N
x) = che%ilm. (0.3)
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for some NV € N. For the second derivative of y, this means

N
'(z) = ch - (2mik)e?mike
—-N

N
y”(x) _ ch . (27Tik)2627rikz.
-N

For the left hand side of Equation (0.2), we hence have

N

y' (@) +y(x) =Y (1 - (2rk)?)cy, - €272,

—-N

Accordingly, we can also write the right hand side as Fourier series

sm (27x) Z Cl eQﬂ'zkm (04)

where the coefficients dj are given by di = <esm(2”), 62”’“"’“">. To observe this fact, note that the set
{e?mikz1, 7 forms an orthonormal basis of the space L2([0;1]). For £ # k:

. . 1 . 1 .
2mily 2mike _ 2mi(l—k)x do = 2mi(l—k) 1) =0
(e L€ )12 /0 e x 2711'(6—14:)(6 )
since e2™" =1 for all n € N. For £ = k it is
HeQm‘ka:H%Q _ <627rika: 27rzk::c / 1dr =1.

So, (e?mitr e2mike) o = §, ) and therefore, for a Fourier series as defined in (0.1), it holds

<f, e27rika:>L2 — <Z Cj627rijaz, eQwik:ﬂ>L2 _ Z Cj<e2m'ja:’ 62m’kw>L2 = . (0‘5)
JEZ JEZ
We see that our coefficients dj, for the right hand side coincide with the values aj that are calculated

with the FFT. Moreover from y”(x) + y(z) = (™) it follows that

N

Z( (27Tk‘) 2mk’x Z d e27r7,kr (06)
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and thus, we can deduce the coeflicients ¢ from
(1— (27k)*) ey =dp for — N <k<N. (0.7)

Inserting this into the ansatz (0.3) yields the approximated solution.

Exercise 3:

An ODE of the present form can be solved by variation of parameters. This principle works as
follows:

First, we solve the homogenous ODE

() = ~2y(t). 08)

One could see that the solution to this equation is y(t) = coefét or use separation of variables

dy _ 1
a — b
o _ i,
Yy €
1 1
/7 dy=— [ — dt,
Yy

As next step we consider ¢ as a differentiable function cy(¢) and determine it such that the inho-
mogenous ODE also holds, i.e.

y(t) = co(t)e*%t satisfies y/(t) = —é(y(t) —sin(t)), y(0) = 1. (0.9)

We start with the derivative of y(t).

_1 1 _1 1 1
(1) = e — Leo(et = ~Lult) ety
Comparing the terms shows that 6C6(t)6_%t must be equal to sin(¢). This, again, gives us an ODE
with the initial value ¢o(0) = 1, since
y(0) = co(0) - 1 = 1. (0.10)

Thus,

co(t) = z /Sin(t)eét dt + c;.

Integrals of this type can be solved by applying two times integration by parts (recall: [u/(z)v(z) dz =
u(z)v(x) — [u(x)v'(x) dx). We have

/sin(t)e%t dt = —cos(t)e%t + B /Cos(t)e%t dt

1
1 1

= —cos(t)e%t + - <Sin(t)ei-t - - /sin(t)e%t dt> .
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So,

1 1
(1+ ?)/sin(t) i = (= sin(t) — cos(t))e ",
Jsnnett ar = = (Lsin(t) — cost)et
Sin e = 1 + 52 c Sin €e -,
. Lt o . Ly
/ sin(t)e" dt = 1 (sin(t) — & cos(t)
and )
. 1
co(t) = m(sm(t) —ecos(t))ez" +cq.

It remains to identify ¢; with the intial value ¢p(0) = 1.

€ !
CO(O) = —1_’_782 +c = 1
c1 =1+ =
b 1+e2
All in all, the solution to the given ODE reads
1
y(t) = co(t)e*%t = (m(sin(t) — Ecos(t))eét +14 ﬁ)e*ét
1

= m(sin(t) —ecos(t)) + (14 ﬁ)e*%t.

(0.11)



