Solutions to Worksheet 6

Exercise 2:

The formal Fourier series of a function $f \in L^2([0;1])$ is given by

$$f(x) = \sum_{k \in \mathbb{Z}} c_k e^{2\pi i k x}.$$
 (0.1)

To approximate the solution of the differential equation

$$y''(x) + y(x) = e^{\sin(2\pi x)}$$
(0.2)

with the FFT we use as ansatz

$$y(x) = \sum_{-N}^{N} c_k e^{2\pi i k x}.$$
 (0.3)

for some $N \in \mathbb{N}$. For the second derivative of y, this means

$$y'(x) = \sum_{-N}^{N} c_k \cdot (2\pi i k) e^{2\pi i k x},$$

$$y''(x) = \sum_{-N}^{N} c_k \cdot (2\pi i k)^2 e^{2\pi i k x}.$$

For the left hand side of Equation (0.2), we hence have

$$y''(x) + y(x) = \sum_{-N}^{N} (1 - (2\pi k)^2) c_k \cdot e^{2\pi i kx}.$$

Accordingly, we can also write the right hand side as Fourier series

$$e^{\sin(2\pi x)} = \sum_{-N}^{N} d_k e^{2\pi i k x}, \tag{0.4}$$

where the coefficients d_k are given by $d_k = \langle e^{\sin(2\pi x)}, e^{2\pi i k x} \rangle$. To observe this fact, note that the set $\{e^{2\pi i k x}\}_{k \in \mathbb{Z}}$ forms an orthonormal basis of the space $L^2([0;1])$. For $\ell \neq k$:

$$\langle e^{2\pi i\ell x}, e^{2\pi ikx} \rangle_{L^2} = \int_0^1 e^{2\pi i(\ell-k)x} dx = \frac{1}{2\pi i(\ell-k)} (e^{2\pi i(\ell-k)} - 1) = 0$$

since $e^{2\pi in} = 1$ for all $n \in \mathbb{N}$. For $\ell = k$ it is

$$||e^{2\pi ikx}||_{L^2}^2 = \langle e^{2\pi ikx}, e^{2\pi ikx} \rangle_{L^2} = \int_0^1 1 \ dx = 1.$$

So, $\langle e^{2\pi i \ell x}, e^{2\pi i k x} \rangle_{L^2} = \delta_{\ell,k}$ and therefore, for a Fourier series as defined in (0.1), it holds

$$\langle f, e^{2\pi ikx} \rangle_{L^2} = \langle \sum_{j \in \mathbb{Z}} c_j e^{2\pi ijx}, e^{2\pi ikx} \rangle_{L^2} = \sum_{j \in \mathbb{Z}} c_j \langle e^{2\pi ijx}, e^{2\pi ikx} \rangle_{L^2} = c_k. \tag{0.5}$$

We see that our coefficients d_k for the right hand side coincide with the values a_k that are calculated with the FFT. Moreover from $y''(x) + y(x) = e^{\sin(2\pi x)}$ it follows that

$$\sum_{-N}^{N} (1 - (2\pi k)^2) c_k \cdot e^{2\pi i k x} = \sum_{-N}^{N} d_k e^{2\pi i k x}$$
(0.6)

and thus, we can deduce the coefficients c_k from

$$(1 - (2\pi k)^2)c_k = d_k \quad \text{for } -N \le k \le N.$$
 (0.7)

Inserting this into the ansatz (0.3) yields the approximated solution.

Exercise 3:

An ODE of the present form can be solved by **variation of parameters**. This principle works as follows:

First, we solve the homogenous ODE

$$y'(t) = -\frac{1}{\varepsilon}y(t). \tag{0.8}$$

One could see that the solution to this equation is $y(t) = c_0 e^{-\frac{1}{\varepsilon}t}$ or use separation of variables

$$\frac{dy}{dt} = -\frac{1}{\varepsilon}y,$$

$$\frac{dy}{y} = -\frac{1}{\varepsilon}dt,$$

$$\int \frac{1}{y} dy = -\int \frac{1}{\varepsilon} dt,$$

$$\ln|y| = -\frac{1}{\varepsilon}t + C,$$

$$y = \pm e^{-\frac{1}{\varepsilon}t + C} := c_0 e^{-\frac{1}{\varepsilon}t}$$

As next step we consider c_0 as a differentiable function $c_0(t)$ and determine it such that the inhomogenous ODE also holds, i.e.

$$y(t) = c_0(t)e^{-\frac{1}{\varepsilon}t} \text{ satisfies } y'(t) = -\frac{1}{\varepsilon}(y(t) - \sin(t)), \ y(0) = 1.$$
 (0.9)

We start with the derivative of y(t).

$$y'(t) = c_0'(t)e^{-\frac{1}{\varepsilon}t} - \frac{1}{\varepsilon}c_0(t)e^{-\frac{1}{\varepsilon}t} = -\frac{1}{\varepsilon}(y(t) - \varepsilon c_0'(t)e^{-\frac{1}{\varepsilon}t})$$

Comparing the terms shows that $\varepsilon c_0'(t)e^{-\frac{1}{\varepsilon}t}$ must be equal to $\sin(t)$. This, again, gives us an ODE with the initial value $c_0(0) = 1$, since

$$y(0) = c_0(0) \cdot 1 \stackrel{!}{=} 1. \tag{0.10}$$

Thus,

$$\varepsilon c_0'(t)e^{-\frac{1}{\varepsilon}t} = \sin(t),$$

$$c_0'(t) = \frac{1}{\varepsilon}\sin(t)e^{\frac{1}{\varepsilon}t},$$

$$c_0(t) = \frac{1}{\varepsilon}\int\sin(t)e^{\frac{1}{\varepsilon}t} dt + c_1.$$

Integrals of this type can be solved by applying two times integration by parts (recall: $\int u'(x)v(x) dx = u(x)v(x) - \int u(x)v'(x) dx$). We have

$$\int \sin(t)e^{\frac{1}{\varepsilon}t} dt = -\cos(t)e^{\frac{1}{\varepsilon}t} + \frac{1}{\varepsilon} \int \cos(t)e^{\frac{1}{\varepsilon}t} dt$$
$$= -\cos(t)e^{\frac{1}{\varepsilon}t} + \frac{1}{\varepsilon} \left(\sin(t)e^{\frac{1}{\varepsilon}t} - \frac{1}{\varepsilon} \int \sin(t)e^{\frac{1}{\varepsilon}t} dt\right).$$

So,

$$(1 + \frac{1}{\varepsilon^2}) \int \sin(t)e^{\frac{1}{\varepsilon}t} dt = (\frac{1}{\varepsilon}\sin(t) - \cos(t))e^{\frac{1}{\varepsilon}t},$$
$$\int \sin(t)e^{\frac{1}{\varepsilon}t} dt = \frac{\varepsilon^2}{1 + \varepsilon^2} (\frac{1}{\varepsilon}\sin(t) - \cos(t))e^{\frac{1}{\varepsilon}t},$$
$$\int \sin(t)e^{\frac{1}{\varepsilon}t} dt = \frac{\varepsilon}{1 + \varepsilon^2} (\sin(t) - \varepsilon\cos(t))e^{\frac{1}{\varepsilon}t}$$

and

$$c_0(t) = \frac{1}{1+\varepsilon^2} (\sin(t) - \varepsilon \cos(t)) e^{\frac{1}{\varepsilon}t} + c_1. \tag{0.11}$$

It remains to identify c_1 with the intial value $c_0(0) = 1$.

$$c_0(0) = -\frac{\varepsilon}{1+\varepsilon^2} + c_1 \stackrel{!}{=} 1$$

$$c_1 = 1 + \frac{\varepsilon}{1+\varepsilon^2}.$$

All in all, the solution to the given ODE reads

$$y(t) = c_0(t)e^{-\frac{1}{\varepsilon}t} = \left(\frac{1}{1+\varepsilon^2}(\sin(t) - \varepsilon\cos(t))e^{\frac{1}{\varepsilon}t} + 1 + \frac{\varepsilon}{1+\varepsilon^2}\right)e^{-\frac{1}{\varepsilon}t}$$
$$= \frac{1}{1+\varepsilon^2}(\sin(t) - \varepsilon\cos(t)) + \left(1 + \frac{\varepsilon}{1+\varepsilon^2}\right)e^{-\frac{1}{\varepsilon}t}.$$