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Exercise 2:
The formal Fourier series of a function f ∈ L2([0; 1]) is given by

f(x) =
∑
k∈Z

cke
2πikx. (0.1)

To approximate the solution of the differential equation

y′′(x) + y(x) = esin(2πx) (0.2)

with the FFT we use as ansatz

y(x) =
N∑
−N

cke
2πikx. (0.3)

for some N ∈ N. For the second derivative of y, this means

y′(x) =
N∑
−N

ck · (2πik)e2πikx,

y′′(x) =
N∑
−N

ck · (2πik)2e2πikx.

For the left hand side of Equation (0.2), we hence have

y′′(x) + y(x) =
N∑
−N

(1− (2πk)2)ck · e2πikx.

Accordingly, we can also write the right hand side as Fourier series

esin(2πx) =
N∑
−N

dke
2πikx, (0.4)

where the coefficients dk are given by dk = 〈esin(2πx), e2πikx〉. To observe this fact, note that the set
{e2πikx}k∈Z forms an orthonormal basis of the space L2([0; 1]). For ` 6= k:

〈e2πi`x, e2πikx〉L2 =
∫ 1

0
e2πi(`−k)x dx = 1

2πi(`− k)(e2πi(`−k) − 1) = 0

since e2πin = 1 for all n ∈ N. For ` = k it is

‖e2πikx‖2L2 = 〈e2πikx, e2πikx〉L2 =
∫ 1

0
1 dx = 1.

So, 〈e2πi`x, e2πikx〉L2 = δ`,k and therefore, for a Fourier series as defined in (0.1), it holds

〈f, e2πikx〉L2 = 〈
∑
j∈Z

cje
2πijx, e2πikx〉L2 =

∑
j∈Z

cj〈e2πijx, e2πikx〉L2 = ck. (0.5)

We see that our coefficients dk for the right hand side coincide with the values ak that are calculated
with the FFT. Moreover from y′′(x) + y(x) = esin(2πx) it follows that

N∑
−N

(1− (2πk)2)ck · e2πikx =
N∑
−N

dke
2πikx (0.6)
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and thus, we can deduce the coefficients ck from

(1− (2πk)2)ck = dk for −N ≤ k ≤ N. (0.7)

Inserting this into the ansatz (0.3) yields the approximated solution.

Exercise 3:
An ODE of the present form can be solved by variation of parameters. This principle works as
follows:
First, we solve the homogenous ODE

y′(t) = −1
ε
y(t). (0.8)

One could see that the solution to this equation is y(t) = c0e
− 1

ε
t or use separation of variables

dy

dt
= −1

ε
y,

dy

y
= −1

ε
dt,∫ 1

y
dy = −

∫ 1
ε
dt,

ln |y| = −1
ε
t+ C,

y = ±e−
1
ε
t+C := c0e

− 1
ε
t.

As next step we consider c0 as a differentiable function c0(t) and determine it such that the inho-
mogenous ODE also holds, i.e.

y(t) = c0(t)e−
1
ε
t satisfies y′(t) = −1

ε
(y(t)− sin(t)), y(0) = 1. (0.9)

We start with the derivative of y(t).

y′(t) = c′0(t)e−
1
ε
t − 1

ε
c0(t)e−

1
ε
t = −1

ε
(y(t)− εc′0(t)e−

1
ε
t)

Comparing the terms shows that εc′0(t)e−
1
ε
t must be equal to sin(t). This, again, gives us an ODE

with the initial value c0(0) = 1, since

y(0) = c0(0) · 1 != 1. (0.10)

Thus,

εc′0(t)e−
1
ε
t = sin(t),

c′0(t) = 1
ε

sin(t)e
1
ε
t,

c0(t) = 1
ε

∫
sin(t)e

1
ε
t dt+ c1.

Integrals of this type can be solved by applying two times integration by parts (recall:
∫
u′(x)v(x) dx =

u(x)v(x)−
∫
u(x)v′(x) dx). We have∫

sin(t)e
1
ε
t dt = − cos(t)e

1
ε
t + 1

ε

∫
cos(t)e

1
ε
t dt

= − cos(t)e
1
ε
t + 1

ε

(
sin(t)e

1
ε
t − 1

ε

∫
sin(t)e

1
ε
t dt

)
.
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So,

(1 + 1
ε2 )

∫
sin(t)e

1
ε
t dt = (1

ε
sin(t)− cos(t))e

1
ε
t,∫

sin(t)e
1
ε
t dt = ε2

1 + ε2 (1
ε

sin(t)− cos(t))e
1
ε
t,∫

sin(t)e
1
ε
t dt = ε

1 + ε2 (sin(t)− ε cos(t))e
1
ε
t

and
c0(t) = 1

1 + ε2 (sin(t)− ε cos(t))e
1
ε
t + c1. (0.11)

It remains to identify c1 with the intial value c0(0) = 1.

c0(0) = − ε

1 + ε2 + c1
!= 1

c1 = 1 + ε

1 + ε2 .

All in all, the solution to the given ODE reads

y(t) = c0(t)e−
1
ε
t = ( 1

1 + ε2 (sin(t)− ε cos(t))e
1
ε
t + 1 + ε

1 + ε2 )e−
1
ε
t

= 1
1 + ε2 (sin(t)− ε cos(t)) + (1 + ε

1 + ε2 )e−
1
ε
t.
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