Gaussian Beam Approximations

Olof Runborg

CSC, KTH

Joint with Hailiang Liu, Iowa, and Nick Tanushev, Austin

Technischen Universität München
München, January 2011
High frequency waves

Cauchy problem for scalar wave equation

\[u_{tt} - c(x)^2 \Delta u = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^n, \]

\[u(0, x) = A(x)e^{i\phi(x)}/\varepsilon, \quad u_t(0, x) = \frac{1}{\varepsilon} B(x)e^{i\phi(x)}/\varepsilon, \]

where \(c(x) \) (variable) speed of propagation.
Cauchy problem for scalar wave equation

\[u_{tt} - c(x)^2 \Delta u = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^n, \]

\[u(0, x) = A(x) e^{i \phi(x) / \varepsilon}, \quad u_t(0, x) = \frac{1}{\varepsilon} B(x) e^{i \phi(x) / \varepsilon}, \]

where \(c(x) \) (variable) speed of propagation.

- High frequency → short wave length → highly oscillatory solutions → many gridpoints.

Solution \(u(x,y) \)
High frequency waves

Cauchy problem for scalar wave equation

\[u_{tt} - c(x)^2 \Delta u = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^n, \]

\[u(0, x) = A(x)e^{i\phi(x)}/\varepsilon, \quad u_t(0, x) = \frac{1}{\varepsilon} B(x)e^{i\phi(x)}/\varepsilon, \]

where \(c(x) \) (variable) speed of propagation.

- High frequency \(\rightarrow \) short wave length \(\rightarrow \) highly oscillatory solutions \(\rightarrow \) many gridpoints.
- Direct numerical solution resolves wavelength:
 \[\#\text{gridpoints} \sim \varepsilon^{-n} \text{ at least} \Rightarrow \text{cost} \sim \varepsilon^{-n-1} \text{ at least} \]
Cauchy problem for scalar wave equation

\[u_{tt} - c(x)^2 \Delta u = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}^n, \]

\[u(0, x) = A(x)e^{i\phi(x)/\varepsilon}, \quad u_t(0, x) = \frac{1}{\varepsilon} B(x)e^{i\phi(x)/\varepsilon}, \]

where \(c(x) \) (variable) speed of propagation.

- High frequency → short wave length → highly oscillatory solutions → many gridpoints.
- Direct numerical solution resolves wavelength:
 \#gridpoints \sim \varepsilon^{-n} \text{ at least} \Rightarrow \text{cost} \sim \varepsilon^{-n-1} \text{ at least}
- Often unrealistic approach for applications in e.g. optics, electromagnetics, geophysics, acoustics, ...
Geometrical optics

Wave equation

\[u_{tt} - c(x)^2 \Delta u = 0. \]

Write solution on the form

\[u(t, x) = a(t, x, \varepsilon)e^{i\phi(t,x)/\varepsilon}. \]
Geometrical optics

Wave equation

\[u_{tt} - c(x)^2 \Delta u = 0. \]

Write solution on the form

\[u(t, x) = a(t, x, \varepsilon)e^{i\phi(t, x)}/\varepsilon. \]

(a) Amplitude \(a(x) \)

(b) Phase \(\phi(x) \)

Solution \(u(x, y) \)
Geometrical optics

- a, ϕ vary on a much coarser scale than u. (And varies little with ε.) Geometrical optics approximation considers a and ϕ as $\varepsilon \to 0$.

\[
\begin{align*}
\phi^2_t - c(y)^2|\nabla \phi|^2 &= 0, \\
\alpha_t + c \nabla \phi \cdot \nabla \alpha |\nabla \phi|^2 + c^2 \Delta \phi - \phi_{tt} 2c |\nabla \phi|^2 \alpha &= 0,
\end{align*}
\]

Good accuracy for small ε. Computational cost ε-independent.

\[
u(t, x) = a(t, x) e^{i \phi(t, x) / \varepsilon} + O(\varepsilon)\]

Waves propagate as rays, c.f. visible light. Not all wave effects captured correctly.
Geometrical optics

- \(a, \phi \) vary on a much coarser scale than \(u \).
 (And varies little with \(\varepsilon \).) Geometrical optics approximation considers \(a \) and \(\phi \) as \(\varepsilon \rightarrow 0 \).
- Phase and amplitude satisfy eikonal and transport equations

\[
\phi_t^2 - c(y)^2 |\nabla \phi|^2 = 0, \quad a_t + c \frac{\nabla \phi \cdot \nabla a}{|\nabla \phi|} + \frac{c^2 \Delta \phi - \phi_{tt}}{2c|\nabla \phi|} a = 0.
\]
Geometrical optics

- a, ϕ vary on a much coarser scale than u. (And varies little with ε.) Geometrical optics approximation considers a and ϕ as $\varepsilon \to 0$.
- Phase and amplitude satisfy eikonal and transport equations

\[
\phi_t^2 - c(y)^2 |\nabla \phi|^2 = 0, \quad a_t + c \frac{\nabla \phi \cdot \nabla a}{|\nabla \phi|} + \frac{c^2 \Delta \phi - \phi_{tt}}{2c|\nabla \phi|} a = 0.
\]

- Good accuracy for small ε. Computational cost ε-independent.

\[
u(t, x) = a(t, x)e^{i\phi(t, x)/\varepsilon} + O(\varepsilon).
\]

(#gridpoints and cost independent of ε)
Geometrical optics

- a, ϕ vary on a much coarser scale than u. (And varies little with ε.) Geometrical optics approximation considers a and ϕ as $\varepsilon \to 0$.
- Phase and amplitude satisfy eikonal and transport equations

\[
\phi_t^2 - c(y)^2 |\nabla \phi|^2 = 0, \quad a_t + c \frac{\nabla \phi \cdot \nabla a}{|\nabla \phi|} + \frac{c^2 \Delta \phi - \phi_{tt}}{2c|\nabla \phi|} a = 0.
\]

- Good accuracy for small ε. Computational cost ε-independent.

\[
u(t, x) = a(t, x)e^{i\phi(t, x)/\varepsilon} + O(\varepsilon).
\]

('#gridpoints and cost independent of ε)
- Waves propagate as rays, c.f. visible light. Not all wave effects captured correctly.
Numerical approaches

- Eikonal and transport equation (PDEs)

\[\phi_t^2 - c(y)^2|\nabla \phi|^2 = 0, \quad a_t + c \frac{\nabla \phi \cdot \nabla a}{|\nabla \phi|} + \frac{c^2 \Delta \phi - \phi_{tt}}{2c|\nabla \phi|} a = 0. \]
Numerical approaches

Eikonal and transport equation (PDEs)

$$\phi_t^2 - c(y)^2|\nabla \phi|^2 = 0, \quad a_t + c \frac{\nabla \phi \cdot \nabla a}{|\nabla \phi|} + \frac{c^2 \Delta \phi - \phi_{tt}}{2c|\nabla \phi|} a = 0.$$

Raytracing (ODEs)

Rays are the (bi)characteristics $\left(x(t), p(t) \right)$ of the eikonal equation,

$$\frac{dx}{dt} = c(x)^2 p, \quad \frac{dp}{dt} = -\frac{\nabla c(x)}{c(x)}, \quad \phi(t, x(t)) = \phi(0, x(0)).$$

$p(t)$ is local ray direction, "slowness" vector ($|p| = 1/c$ and $p = \nabla \phi(x)$). (Also ODEs for amplitude.)
Numerical approaches

- Eikonal and transport equation (PDEs)
 \[
 \phi_t^2 - c(y)^2|\nabla \phi|^2 = 0, \quad a_t + c \frac{\nabla \phi \cdot \nabla a}{|\nabla \phi|} + \frac{c^2 \Delta \phi - \phi_{tt}}{2c|\nabla \phi|} a = 0.
 \]

- Raytracing (ODEs)
 Rays are the (bi)characteristics \((x(t), p(t))\) of the eikonal equation,
 \[
 \frac{dx}{dt} = c(x)^2 p, \quad \frac{dp}{dt} = -\nabla c(x) c(x), \quad \phi(t, x(t)) = \phi(0, x(0)).
 \]
 \(p(t)\) is local ray direction, "slowness" vector (\(|p| = 1/c\) and \(p = \nabla \phi(x)\)). (Also ODEs for amplitude.)

Difficulties:
- Nonlinearity of eikonal equation, viscosity solution, kinks
- Multiphase solutions, crossing rays
- Diverging rays
- Breakdown of geometrical optics (boundaries, caustics)
Caustics

Concentration of rays.

Amplitude $a(t, y) \to \infty$ but should be $a(t, y) \sim \varepsilon^{-\alpha}$, $0 < \alpha < 1$.
Schrödinger Case

Same conclusions also for the time-dependent Schrödinger equation

\[i\varepsilon u_t + \varepsilon^2 \Delta u - V(x)u = 0. \]

Geometrical optics with

\[u(t, x) = a(t, x)e^{i\phi(t, x)/\varepsilon} + O(\varepsilon), \]

- Eikonal and transport equation

\[\phi_t + |\nabla \phi|^2 - V(x)\phi = 0, \quad a_t + 2\nabla \phi \cdot \nabla a + a\Delta \phi = 0. \]
Schrödinger Case

Same conclusions also for the time-dependent Schrödinger equation

\[i\varepsilon u_t + \varepsilon^2 \Delta u - V(x)u = 0. \]

Geometrical optics with

\[u(t, x) = a(t, x)e^{i\phi(t, x)/\varepsilon} + O(\varepsilon), \]

- Eikonal and transport equation

\[\phi_t + |\nabla \phi|^2 - V(x)\phi = 0, \quad a_t + 2\nabla \phi \cdot \nabla a + a\Delta \phi = 0. \]

- Raytracing ($p(t)$ is momentum)

\[\frac{dx}{dt} = p, \quad \frac{dp}{dt} = -\nabla V(x), \quad \frac{d\phi}{dt} = \frac{1}{2} |p|^2 - V(x). \]
Schrödinger Case

Same conclusions also for the time-dependent Schrödinger equation

\[i\varepsilon u_t + \varepsilon^2 \Delta u - V(x)u = 0. \]

Geometrical optics with

\[u(t, x) = a(t, x)e^{i\phi(t, x)/\varepsilon} + O(\varepsilon), \]

- Eikonal and transport equation

\[\phi_t + |\nabla \phi|^2 - V(x)\phi = 0, \quad a_t + 2\nabla \phi \cdot \nabla a + a\Delta \phi = 0. \]

- Raytracing (\(p(t) \) is momentum)

\[\frac{dx}{dt} = p, \quad \frac{dp}{dt} = -\nabla V(x), \quad \frac{d\phi}{dt} = \frac{1}{2}|p|^2 - V(x). \]

Difficulties:

- Nonlinearity of eikonal equation, viscosity solution, kinks
- Multiphase solutions, crossing rays, diverging rays
- Breakdown of geometrical optics (boundaries, caustics)
Outline

Improved high frequency asymptotic approximations based on Gaussian beams

1. Construction and derivation
2. Error estimates in terms of ε
3. Numerics (some)
Constructing asymptotic solutions

1. Make an ansatz for the form the solution $\tilde{u}(t, y)$ with some unknown coefficients/functions, e.g.

$$\tilde{u}(t, y) = a(t, y)e^{i\Phi(t,y)/\varepsilon},$$
1. Make an ansatz for the form the solution \(\tilde{u}(t, y) \) with some unknown coefficients/functions, e.g.

\[
\tilde{u}(t, y) = a(t, y)e^{i\Phi(t,y)/\varepsilon},
\]

2. Find the coefficients/functions in the ansatz such that \(\tilde{u} \) satisfies the Schrödinger equation as well as possible,

\[
\left| i\varepsilon \tilde{u}_t + \varepsilon^2 \Delta \tilde{u} - V(x)\tilde{u} \right| \ll 1.
\]
Constructing asymptotic solutions

1. Make an ansatz for the form the solution $\tilde{u}(t, y)$ with some unknown coefficients/functions, e.g.
 \[\tilde{u}(t, y) = a(t, y)e^{i\Phi(t,y)/\varepsilon}, \]

2. Find the coefficients/functions in the ansatz such that \tilde{u} satisfies the Schrödinger equation as well as possible,
 \[\left| i\varepsilon \tilde{u}_t + \varepsilon^2 \Delta \tilde{u} - V(x)\tilde{u} \right| \ll 1. \]

3. ... and such that the coefficients can be numerically computed much easier than the full solution u itself.
Use WKB expansion as ansatz \((a(t, y) \text{ a power series in } i\varepsilon)\)

\[
 u(t, y) = e^{i\Phi(t, y)/\varepsilon} \sum_{k=0}^{K-1} a_k(t, y)(i\varepsilon)^k.
\]

Find the coefficients in the ansatz.

\[
 i\varepsilon u_t + \varepsilon^2 \Delta u - V u = -E[\Phi] u + i\varepsilon P[a_0] e^{i\Phi/\varepsilon} + K^{-1} \sum_{k=0}^{K-2} (i\varepsilon)^k + 2 \left(P[a_{k+1}] - \Delta a_k \right) e^{i\Phi/\varepsilon} - (i\varepsilon)K^{-1} \Delta a_K e^{i\Phi/\varepsilon}
\]

where

\[
 E[\Phi] := \Phi_t + |\nabla \Phi|^2 + V \Phi,
\]

\[
 P[a] := a_t + 2 \nabla \phi \cdot \nabla a + a \Delta \phi.
\]

Solve \(E[\Phi] = 0, P[a_0] = 0\) and \(P[a_{k+1}] = \Delta a_k\).

Non-oscillatory problems, easier to solve.
Example: Geometrical optics

1. Use WKB expansion as ansatz \((a(t, y) \text{ a power series in } i\varepsilon)\)

\[u(t, y) = e^{i\Phi(t, y)/\varepsilon} \sum_{k=0}^{K-1} a_k(t, y)(i\varepsilon)^k. \]

2. Find the coefficients in the ansatz.

\[i\varepsilon u_t + \varepsilon^2 \Delta u - Vu = -\varepsilon[\Phi]u + i\varepsilon\mathcal{P}[a_0]e^{i\Phi/\varepsilon} \]

\[+ \sum_{k=0}^{K-2} (i\varepsilon)^{k+2} (\mathcal{P}[a_{k+1}] - \Delta a_k) e^{i\Phi/\varepsilon} - (i\varepsilon)^{K+1} \Delta a_{K-1} e^{i\Phi/\varepsilon} \]

where \(\varepsilon\) and \(\mathcal{P}\) are the eikonal and transport operators

\[\varepsilon[\Phi] := \Phi_t + |\nabla \Phi|^2 + V\Phi, \quad \mathcal{P}[a] := a_t + 2\nabla \phi \cdot \nabla a + a \Delta \phi. \]
Example: Geometrical optics

1. Use WKB expansion as ansatz \((a(t, y) \text{ a power series in } i\epsilon)\)

\[u(t, y) = e^{i\Phi(t, y)/\epsilon} \sum_{k=0}^{K-1} a_k(t, y)(i\epsilon)^k. \]

2. Find the coefficients in the ansatz.

\[i\epsilon u_t + \epsilon^2 \Delta u - Vu = -\epsilon[\Phi]u + i\epsilon \mathcal{P}[a_0] e^{i\Phi/\epsilon} \]

\[+ \sum_{k=0}^{K-2} (i\epsilon)^{k+2} (\mathcal{P}[a_{k+1}] - \Delta a_k) e^{i\Phi/\epsilon} - (i\epsilon)^{K+1} \Delta a_{K-1} e^{i\Phi/\epsilon} \]

where \(\mathcal{E}\) and \(\mathcal{P}\) are the eikonal and transport operators

\[\mathcal{E}[\Phi] := \Phi_t + |\nabla \Phi|^2 + V \Phi, \quad \mathcal{P}[a] := a_t + 2 \nabla \phi \cdot \nabla a + a \Delta \phi. \]

Solve \(\mathcal{E}[\Phi] = 0, \mathcal{P}[a_0] = 0\) and \(\mathcal{P}[a_{k+1}] = \Delta a_k\). Then,

\[i\epsilon u_t + \epsilon^2 \Delta u - Vu = O(\epsilon^{K+1}) \]
Example: Geometrical optics

1. Use WKB expansion as ansatz \((a(t, y) a power series in \(i\varepsilon\))

\[
u(t, y) = e^{i\Phi(t, y)/\varepsilon} \sum_{k=0}^{K-1} a_k(t, y) (i\varepsilon)^k.
\]

2. Find the coefficients in the ansatz.

\[
i\varepsilon u_t + \varepsilon^2 \Delta u - Vu = -\varepsilon[\Phi]u + i\varepsilon \mathcal{P}[a_0] e^{i\Phi/\varepsilon}
+ \sum_{k=0}^{K-2} (i\varepsilon)^{k+2} (\mathcal{P}[a_{k+1}] - \Delta a_k) e^{i\Phi/\varepsilon} - (i\varepsilon)^{K+1} \Delta a_{K-1} e^{i\Phi/\varepsilon}
\]

where \(\varepsilon\) and \(\mathcal{P}\) are the eikonal and transport operators

\[
\varepsilon[\Phi] := \Phi_t + |\nabla \Phi|^2 + V\Phi, \quad \mathcal{P}[a] := a_t + 2\nabla \phi \cdot \nabla a + a\Delta \phi.
\]

Solve \(\varepsilon[\Phi] = 0, \mathcal{P}[a_0] = 0\) and \(\mathcal{P}[a_{k+1}] = \Delta a_k\). Then,

\[
i\varepsilon u_t + \varepsilon^2 \Delta u - Vu = O(\varepsilon^{K+1})
\]

3. Non-oscillatory problems, easier to solve.
Gaussian approximations

Approximate solutions to the wave equations/Schrödinger with a Gaussian profile (width $\sim \sqrt{\varepsilon}$).
Gaussian approximations

- Approximate solutions to the wave equations/Schrodinger with a Gaussian profile (width $\sim \sqrt{\varepsilon}$).
- For waves studied by e.g. Cerveny, Popov, Babich, Psencik, Ralston, Hörmander, Klimes, Hill, etc.
Gaussian approximations

- Approximate solutions to the wave equations/Schrödinger with a Gaussian profile (width $\sim \sqrt{\varepsilon}$).
- For waves studied by e.g. Cerveny, Popov, Babich, Psencik, Ralston, Hörmander, Klimes, Hill, etc.
- For Schrödinger, classical (coherent state), Heller, Hagedorn, Herman, Kluk, Kay, etc.
Approximate solutions to the wave equations/Schrödinger with a Gaussian profile (width $\sim \sqrt{\varepsilon}$).

- For waves studied by e.g. Cerveny, Popov, Babich, Psencik, Ralston, Hörmander, Klimes, Hill, etc.
- For Schrödinger, classical (coherent state), Heller, Hagedorn, Herman, Kluk, Kay, etc.
- No break down at caustics. Gives e.g. improved seismic imaging.
Approximation of the same form as geometrical optics solutions,

\[v(t, y) = a(t, y)e^{i\Phi(t, y)/\varepsilon}, \quad \Phi(t, y) = \phi(t, y - x(t)), \]

where \(x(t) \) is a geometrical optics ray.
Gaussian approximations

- Approximation of the same form as geometrical optics solutions,

\[\nu(t, y) = a(t, y)e^{i\Phi(t, y)/\varepsilon}, \quad \Phi(t, y) = \phi(t, y - x(t)), \]

where \(x(t) \) is a geometrical optics ray.

- The phase \(\Phi \) will now have a positive imaginary part away from the ray \(x(t) \).

Gaussian Beam Approximations
Gaussian approximations

- Approximation of the same form as geometrical optics solutions,

\[v(t, y) = a(t, y)e^{i\Phi(t, y)/\varepsilon}, \quad \Phi(t, y) = \phi(t, y - x(t)), \]

where \(x(t) \) is a geometrical optics ray.

- The phase \(\Phi \) will now have a positive imaginary part away from the ray \(x(t) \).

- Imaginary part of \(\phi \sim |y|^2 \Rightarrow |v(t, y)| \sim e^{-|y-x(t)|^2/\varepsilon}, \)
Gaussian approximations

- Approximation of the same form as geometrical optics solutions,

\[v(t, y) = a(t, y)e^{i\Phi(t, y)/\varepsilon}, \quad \Phi(t, y) = \phi(t, y - x(t)), \]

where \(x(t) \) is a geometrical optics ray.

- The phase \(\Phi \) will now have a positive imaginary part away from the ray \(x(t) \).

- Imaginary part of \(\phi \sim |y|^2 \Rightarrow |v(t, y)| \sim e^{-|y-x(t)|^2/\varepsilon}, \)
 - Gaussian with width \(\sqrt{\varepsilon} \)
 - Localized around \(x(t) \). (Moves along the space time ray.)
Approximation of the same form as geometrical optics solutions,

\[v(t, y) = a(t, y) e^{i\Phi(t, y)/\varepsilon}, \quad \Phi(t, y) = \phi(t, y - x(t)), \]

where \(x(t) \) is a geometrical optics ray.

The phase \(\Phi \) will now have a positive imaginary part away from the ray \(x(t) \).

Imaginary part of \(\phi \sim |y|^2 \Rightarrow |v(t, y)| \sim e^{-|y-x(t)|^2/\varepsilon}, \)

- Gaussian with width \(\sqrt{\varepsilon} \)
- Localized around \(x(t) \). (Moves along the space time ray.)

Amplitude \(a(t, y) \) and the phase \(\Phi(t, y) \) approximated by polynomials locally around \(x(t) \).
The simplest ("first order") Gaussian beams use the ansatz

\[v(t, y) = a(t) e^{i\Phi(t, y)/\varepsilon}, \quad \Phi(t, y) = \phi(t, y - x(t)), \]

where

\[\phi(t, y) = \phi_0(t) + y \cdot p(t) + \frac{1}{2} y \cdot M(t) y. \]

i.e. \(a(t, y) \) approximated to 0th order, and \(\Phi(t, y) \) to 2nd order.
The simplest ("first order") Gaussian beams use the ansatz

\[\nu(t, y) = a(t)e^{i\Phi(t, y)/\varepsilon}, \quad \Phi(t, y) = \phi(t, y - x(t)) , \]

where

\[\phi(t, y) = \phi_0(t) + y \cdot p(t) + \frac{1}{2} y \cdot M(t)y. \]

i.e. \(a(t, y)\) approximated to 0th order, and \(\Phi(t, y)\) to 2nd order.

⇒

We can require that \(\Phi(t, y)\) solves eikonal to order \(O(|y - x|^3)\) and \(a(t, y)\) solves transport equation to order \(O(|y - x|)\).
Let us thus require that

\[\Phi_t + |\nabla \Phi|^2 - V(y)\Phi = O(|y - x(t)|^3), \quad a_t + 2\nabla \Phi \cdot \nabla a + a\Delta \Phi = O(|y - x(t)|). \]
First order beams

Let us thus require that

\[\dot{\Phi} + |\nabla \Phi|^2 - V(y) \Phi = O(|y-x(t)|^3), \quad a_t + 2\nabla \Phi \cdot \nabla a + a \Delta \Phi = O(|y-x(t)|). \]

Then we obtain ODEs for \(\phi_0, x, p, M, a_0 \).

\[
\begin{align*}
\dot{x}(t) &= p, \\
\dot{p}(t) &= -\nabla V(x), \\
\dot{\phi}_0(t) &= \frac{1}{2} |p|^2 - V(x), \\
\dot{M}(t) &= -M^2 - \partial_x^2 V(x), \\
\dot{a}_0(t) &= -\frac{1}{2} a_0 \text{Tr}(M).
\end{align*}
\]

Easy to compute numerically!
Asymptotic order

As before,

\[i\varepsilon v_t + \varepsilon^2 \Delta v - Vv = -\varepsilon[\Phi]u + i\varepsilon \mathcal{P}[a]e^{i\Phi/\varepsilon} - (i\varepsilon)^2 \Delta ae^{i\Phi/\varepsilon} \]
Asymptotic order

As before,

\[i\varepsilon v_t + \varepsilon^2 \Delta v - Vv = -\varepsilon[\Phi]u + i\varepsilon \mathcal{P}[a]e^{i\Phi/\varepsilon} - (i\varepsilon)^2 \Delta a e^{i\Phi/\varepsilon} \]

Here we enforce

\[\varepsilon[\Phi] = O(|y - x|^3), \quad \mathcal{P}[a] = O(|y - x|), \]

and \(\Delta a = \Delta a_0(t) = 0 \) by construction.
Asymptotic order

As before,

\[i \varepsilon v_t + \varepsilon^2 \Delta v - Vv = -\varepsilon[\Phi]u + i \varepsilon P[a]e^{i\Phi/\varepsilon} - (i \varepsilon)^2 \Delta a e^{i\Phi/\varepsilon} \]

Here we enforce

\[\varepsilon[\Phi] = O(|y - x|^{3}), \quad P[a] = O(|y - x|), \]

and \(\Delta a = \Delta a_0(t) = 0 \) by construction.

Hence, since \(|\exp(i\Phi/\varepsilon)| \sim \exp(-|y - x|^2/\varepsilon) \),

\[i \varepsilon v_t + \varepsilon^2 \Delta v - Vv = O \left(\left| |y - x|^3 + \varepsilon|y - x| \right| e^{-\frac{|y-x|^2}{\varepsilon}} \right). \]
Asymptotic order

As before,

\[i\varepsilon v_t + \varepsilon^2 \Delta v - Vv = -\varepsilon[\Phi]u + i\varepsilon \mathcal{P}[a]e^{i\Phi/\varepsilon} - (i\varepsilon)^2 \Delta ae^{i\Phi/\varepsilon} \]

Here we enforce

\[\varepsilon[\Phi] = O(|y - x|^3), \quad \mathcal{P}[a] = O(|y - x|), \]

and \(\Delta a = \Delta a_0(t) = 0 \) by construction.

Hence, since \(|\exp(i\Phi/\varepsilon)| \sim \exp(-|y - x|^2/\varepsilon) \),

\[i\varepsilon v_t + \varepsilon^2 \Delta v - Vv = O \left(\left[|y - x|^3 + \varepsilon |y - x| \right] e^{-\frac{|y - x|^2}{\varepsilon}} \right). \]

Using \(x^p e^{-x^2/\varepsilon} \leq C_p \varepsilon^{p/2} \) we then get

\[i\varepsilon v_t + \varepsilon^2 \Delta v - Vv = O \left(\varepsilon^{3/2} \right) \]
Asymptotic order

As before,

\[i\varepsilon v_t + \varepsilon^2 \Delta v - Vv = -\varepsilon[\Phi]u + i\varepsilon\mathcal{P}[a]e^{i\Phi}/\varepsilon - (i\varepsilon)^2 \Delta a e^{i\Phi}/\varepsilon \]

Here we enforce

\[\varepsilon[\Phi] = O(|y - x|^3), \quad \mathcal{P}[a] = O(|y - x|), \]

and \(\Delta a = \Delta a_0(t) = 0 \) by construction. Hence, since \(|\exp(i\Phi/\varepsilon)| \sim \exp(-|y - x|^2/\varepsilon) \),

\[i\varepsilon v_t + \varepsilon^2 \Delta v - Vv = O \left(|y - x|^3 + \varepsilon|y - x| \right) e^{-|y-x|^2/\varepsilon} \] .

Using \(x^p e^{-x^2/\varepsilon} \leq C_p \varepsilon^{p/2} \) we then get

\[i\varepsilon v_t + \varepsilon^2 \Delta v - Vv = O \left(\varepsilon^{3/2} \right) \]

(C.f. GO: \(i\varepsilon u_t + \varepsilon^2 \Delta u - Vu = O(\varepsilon^2) \).)
Gaussian beams

Properties

\[v(t, y) = a_0(t) e^{i \phi(t, y-x(t))/\varepsilon}, \quad \phi(t, y) = \phi_0(t) + y \cdot p(t) + \frac{1}{2} y \cdot M(t)y \]

- \(\Phi(t, x(t)) = \phi(t, 0) = \phi_0(t) \) is real valued
- If \(M(0) \) is symmetric and \(\Im M(0) \) is positive definite then this is true for \(M(t) \) (which exists) for all \(t > 0 \).
- Second derivatives of \(\phi \) exist everywhere (no blow-up at caustics)
- Shape of beam remains Gaussian
Higher order beams

More generally, we can construct higher order beams. Let

$$v(t, y) = a(t, y - x(t)) e^{i \phi(t, y - x(t))/\epsilon},$$

where, for order K beams,
Higher order beams

More generally, we can construct higher order beams. Let

$$v(t, y) = a(t, y - x(t))e^{i\phi(t, y - x(t))/\varepsilon},$$

where, for order K beams,

- The phase is a Taylor polynomial to order $K + 1$,

$$\phi(t, y) = \phi_0(t) + y \cdot p(t) + y \cdot \frac{1}{2} M(t)y + \sum_{|\beta| = 3}^{K+1} \frac{1}{\beta!} \phi_\beta(t)y^\beta.$$
More generally, we can construct higher order beams. Let
\[v(t, y) = a(t, y - x(t)) e^{i\phi(t, y - x(t))/\varepsilon}, \]
where, for order K beams,
- The phase is a Taylor polynomial to order $K + 1$,
 \[\phi(t, y) = \phi_0(t) + y \cdot p(t) + y \cdot \frac{1}{2} M(t)y + \sum_{|\beta|=3}^{K+1} \frac{1}{\beta!} \phi_\beta(t)y^\beta. \]
- A is now a finite WKB expansion,
 \[a(t, y) = \sum_{j=0}^{[K/2]-1} \varepsilon^j a_j(t, y). \]
More generally, we can construct higher order beams. Let

\[\nu(t, y) = a(t, y - x(t)) e^{i\phi(t, y - x(t))/\varepsilon}, \]

where, for order \(K \) beams,

- The phase is a Taylor polynomial to order \(K + 1 \),

\[\phi(t, y) = \phi_0(t) + y \cdot p(t) + y \cdot \frac{1}{2} M(t)y + \sum_{|\beta|=3}^{K+1} \frac{1}{\beta!} \phi_\beta(t)y^\beta. \]

- \(A \) is now a finite WKB expansion,

\[a(t, y) = \sum_{j=0}^{[K/2]-1} \varepsilon^j a_j(t, y) \]

- Each amplitude term \(a_j \) is a Taylor polynomial to order \(K - 2j - 1 \)

\[a_j(t, y) = \sum_{|\beta|=0}^{K-2j-1} \frac{1}{\beta!} a_{j,\beta}(t)y^\beta \]
Higher order beams

We now require that

- $\phi(t, y)$ solves the eikonal equation to order $|y - x|^{K+2}$
- $a_j(t, y)$ solves the higher order transport equations to order $|y - x|^{K-2j}$
We now require that

- $\phi(t, y)$ solves eikonal equation to order $|y - x|^{K+2}$
- $a_j(t, y)$ solve higher order transport equations to order $|y - x|^{K-2j}$

This gives ODEs for all Taylor coefficients,

$$
\begin{align*}
\dot{x}(t) &= p, \\
\dot{p}(t) &= -\nabla V(x), \\
\dot{\phi}_0(t) &= \frac{1}{2} |p|^2 - V(x), \\
\dot{M}(t) &= -M^2 - \partial_x^2 V(x), \\
\dot{a}_{j,\beta}(t) &= \ldots, \\
\dot{\phi}_\beta(t) &= \ldots,
\end{align*}
$$
Higher order beams

We now require that

- \(\phi(t, y) \) solves eikonal equation to order \(|y - x|^{K+2} \)
- \(a_j(t, y) \) solve higher order transport equations to order \(|y - x|^{K-2j} \)

This gives ODEs for all Taylor coefficients,

\[
\begin{align*}
\dot{x}(t) &= p, \\
\dot{p}(t) &= -\nabla V(x), \\
\dot{\phi}_0(t) &= \frac{1}{2} |p|^2 - V(x), \\
\dot{M}(t) &= -M^2 - \partial_x^2 V(x), \\
\dot{a}_{j, \beta}(t) &= \ldots, \\
\dot{\phi}_{\beta}(t) &= \ldots,
\end{align*}
\]

Again, \(\Phi(t, x(t)) \) is real and \(\Im M(t) > 0 \Rightarrow \) no problems at caustics.
Asymptotic order

As before, with $\tilde{K} = \lceil K/2 \rceil$,

$$i\varepsilon v_t + \varepsilon^2 \Delta v - Vv = -\varepsilon [\Phi] v + i\varepsilon P[a_0] e^{i\Phi/\varepsilon}$$

$$+ \sum_{k=0}^{\tilde{K}-2} (i\varepsilon)^{k+2} (P[a_{k+1}] - \Delta a_k) e^{i\Phi/\varepsilon} - (i\varepsilon)^{\tilde{K}+1} \Delta a_{\tilde{K}-1} e^{i\Phi/\varepsilon}$$
As before, with $\tilde{K} = \lceil K/2 \rceil$,

$$i\varepsilon v_t + \varepsilon^2 \Delta v - Vv = -\mathcal{E}[\Phi]v + i\varepsilon \mathcal{P}[a_0] e^{i\Phi/\varepsilon}$$

$$+ \sum_{k=0}^{\tilde{K}-2} (i\varepsilon)^{k+2} (\mathcal{P}[a_{k+1}] - \Delta a_k) e^{i\Phi/\varepsilon} - (i\varepsilon)^{\tilde{K}+1} \Delta a_{\tilde{K}-1} e^{i\Phi/\varepsilon}$$

Here we enforce that

$$\mathcal{E}[\Phi] = O(|y-x|^{K+2}), \quad \mathcal{P}[a_0] = O(|y-x|^K),$$

$$\mathcal{P}[a_{k+1}] - \Delta a_k = O(|y-x|^{K-2k-2}), \quad k = 0, \ldots, \tilde{K} - 2.$$
Asymptotic order

As before, with \(\tilde{K} = \lceil K/2 \rceil \),

\[
i \varepsilon v_t + \varepsilon^2 \Delta v - Vv = -\varepsilon[\Phi]v + i \varepsilon \mathcal{P}[a_0] e^{i\Phi/\varepsilon}
\]

\[
+ \sum_{k=0}^{\tilde{K}-2} (i \varepsilon)^{k+2} (\mathcal{P}[a_{k+1}] - \Delta a_k) e^{i\Phi/\varepsilon} - (i \varepsilon)^{\tilde{K}+1} \Delta a_{\tilde{K}-1} e^{i\Phi/\varepsilon}
\]

Here we enforce that

\[
\varepsilon[\Phi] = O(|y - x|^{K+2}), \quad \mathcal{P}[a_0] = O(|y - x|^K),
\]

\[
\mathcal{P}[a_{k+1}] - \Delta a_k = O(|y - x|^{K-2k-2}), \quad k = 0, \ldots, \tilde{K} - 2.
\]

This means that

\[
i \varepsilon v_t + \varepsilon^2 \Delta v - Vv = O \left(|y - x|^{K+2} e^{-\frac{|y-x|^2}{\varepsilon}} \right) + O \left(\varepsilon |y - x|^K e^{-\frac{|y-x|^2}{\varepsilon}} \right)
\]

\[
+ \sum_{k=1}^{\tilde{K}-2} O \left(\varepsilon^{k+2} |y - x|^{K-2k-2} e^{-\frac{|y-x|^2}{\varepsilon}} \right) + O \left(\varepsilon^{\tilde{K}+1} e^{-\frac{|y-x|^2}{\varepsilon}} \right)
\]
As before, with $\tilde{K} = \lceil K/2 \rceil$,

$$i\varepsilon v_t + \varepsilon^2 \Delta v - Vv = -\varepsilon [\Phi] v + i\varepsilon \mathcal{P}[a_0] e^{i\Phi/\varepsilon}$$

$$+ \sum_{k=0}^{\tilde{K}-2} (i\varepsilon)^{k+2} (\mathcal{P}[a_{k+1}] - \Delta a_k) e^{i\Phi/\varepsilon} - (i\varepsilon)^{\tilde{K}+1} \Delta a_{\tilde{K}-1} e^{i\Phi/\varepsilon}$$

This means that

$$i\varepsilon v_t + \varepsilon^2 \Delta v - Vv = O\left(|y - x|^{K+2} e^{-\frac{|y-x|^2}{\varepsilon}}\right) + O\left(\varepsilon |y - x|^K e^{-\frac{|y-x|^2}{\varepsilon}}\right)$$

$$+ \sum_{k=1}^{\tilde{K}-2} O\left(\varepsilon^{k+2} |y - x|^{K-2k-2} e^{-\frac{|y-x|^2}{\varepsilon}}\right) + O\left(\varepsilon^{\tilde{K}+1} e^{-\frac{|y-x|^2}{\varepsilon}}\right)$$
Asymptotic order

As before, with \(\tilde{K} = \lceil K/2 \rceil \),

\[
i \varepsilon v_t + \varepsilon^2 \Delta v - Vv = -\varepsilon [\Phi] v + i \varepsilon P[a_0] e^{i\Phi/\varepsilon}
\]

\[
+ \sum_{k=0}^{K-2} (i \varepsilon)^{k+2} (P[a_{k+1}] - \Delta a_k) e^{i\Phi/\varepsilon} - (i \varepsilon)^{\tilde{K}+1} \Delta a_{\tilde{K}-1} e^{i\Phi/\varepsilon}
\]

This means that

\[
i \varepsilon v_t + \varepsilon^2 \Delta v - Vv = O \left(|y - x|^{K+2} e^{-\frac{|y-x|^2}{\varepsilon}} \right) + O \left(\varepsilon |y - x|^K e^{-\frac{|y-x|^2}{\varepsilon}} \right)
\]

\[
+ \sum_{k=1}^{\tilde{K}-2} O \left(\varepsilon^{k+2} |y - x|^{K-2k-2} e^{-\frac{|y-x|^2}{\varepsilon}} \right) + O \left(\varepsilon^{\tilde{K}+1} e^{-\frac{|y-x|^2}{\varepsilon}} \right)
\]

Recalling that \(x^p e^{-x^2/\varepsilon} \leq C_p \varepsilon^{p/2} \),

\[
i \varepsilon v_t + \varepsilon^2 \Delta v - Vv = O \left(\varepsilon^{K/2+1} \right)
\]
Thawed Gaussian Approximation [Heller, 75]
Let ϕ always be a second order polynomial. Take higher order polynomial in amplitude. (Use more terms in amplitude to correct also for errors in phase.)
Other gaussian beam like approximations

- Thawed Gaussian Approximation [Heller, 75]
 Let ϕ always be a second order polynomial. Take higher order polynomial in amplitude. (Use more terms in amplitude to correct also for errors in phase.)

- Frozen Gaussian Approximation [Heller, 81], [Herman, Kluk, 84]
 Let ϕ always be a second order polynomial, with a fixed second derivative ($M(t) = \text{constant}$). Single frozen Gaussian not an asymptotic solution. Use superposition of frozen Gaussians. (\sim linear basis expansion)
Other gaussian beam like approximations

- **Thawed Gaussian Approximation** [Heller, 75]
 Let ϕ always be a second order polynomial. Take higher order polynomial in amplitude. (Use more terms in amplitude to correct also for errors in phase.)

- **Frozen Gaussian Approximation** [Heller, 81], [Herman, Kluk, 84]
 Let ϕ always be a second order polynomial, width a fixed second derivative ($M(t) =$constant). Single frozen Gaussian not an asymptotic solution. Use superposition of frozen Gaussians. (\sim linear basis expansion)

- Gives ODEs for coefficients.
Approximation Errors

Suppose u is exact solution

$$i\varepsilon \partial_t u + \varepsilon^2 \Delta u - Vu = 0.$$

and \tilde{u} is the approximate asymptotic solution,

$$i\varepsilon \partial_t \tilde{u} + \varepsilon^2 \Delta \tilde{u} - V\tilde{u} \ll 1.$$

What is the norm error in \tilde{u}, i.e. $||u - \tilde{u}||$?
Approximation Errors

Suppose \(u \) is exact solution

\[
i \varepsilon \partial_t u + \varepsilon^2 \Delta u - Vu = 0.
\]

and \(\tilde{u} \) is the approximate asymptotic solution,

\[
i \varepsilon \partial_t \tilde{u} + \varepsilon^2 \Delta \tilde{u} - V \tilde{u} \ll 1.
\]

What is the norm error in \(\tilde{u} \), i.e. \(\| u - \tilde{u} \| \)?

Use well-posedness (stability) estimate for PDE:

\[
i \varepsilon \partial_t w + \varepsilon^2 \Delta w - Vw = f(t, x),
\]

implies that for \(0 \leq t \leq T \),

\[
\| w(t, \cdot) \|_{L^2} \leq \| w(0, \cdot) \|_{L^2} + \frac{C(T)}{\varepsilon} \sup_{t \in [0, T]} \| f(t, \cdot) \|_{L^2}.
\]
Define P^ε as

$$P^\varepsilon[w] := i\varepsilon \partial_t w + \varepsilon^2 \Delta w - Vw.$$

Then $P^\varepsilon[u] = 0$ and

$$P^\varepsilon[\tilde{u} - u] = P^\varepsilon[\tilde{u}] - P^\varepsilon[u] = P^\varepsilon[\tilde{u}].$$

Moreover, the well-posedness estimate can be rewritten

$$\|w(t, \cdot)\|_{L^2} \leq \|w(0, x)\|_{L^2} + \frac{C(T)}{\varepsilon} \sup_{t \in [0, T]} \|P^\varepsilon[w](0, \cdot)\|_{L^2}.$$
Approximation Errors

Define P^ε as

$$P^\varepsilon[w] := i\varepsilon \partial_t w + \varepsilon^2 \Delta w - Vw.$$

Then $P^\varepsilon[u] = 0$ and

$$P^\varepsilon[\tilde{u} - u] = P^\varepsilon[\tilde{u}] - P^\varepsilon[u] = P^\varepsilon[\tilde{u}].$$

Moreover, the well-posedness estimate can be rewritten

$$\|w(t, \cdot)\|_{L^2} \leq \|w(0, x)\|_{L^2} + \frac{C(T)}{\varepsilon} \sup_{t \in [0,T]} \|P^\varepsilon[w](0, \cdot)\|_{L^2}.$$

Hence, assuming $u(0, x) = \tilde{u}(0, x),$}

$$\|\tilde{u}(t, \cdot) - u(t, \cdot)\|_{L^2} \leq \frac{C(T)}{\varepsilon} \sup_{t \in [0,T]} \|P^\varepsilon[\tilde{u}](t, \cdot)\|_{L^2}, \quad 0 \leq t \leq T.$$

Error in $\tilde{u} \sim$ how well it satisfies equation, minus one order in ε.
If \(\phi \) and \(A \) satisfy eikonal equation and (high order) transport equations, then for

\[
\tilde{u}_{GO} = A(t, x)e^{i\phi(t,x)/\varepsilon},
\]

we have

\[
P^\varepsilon [\tilde{u}_{GO}] (t, x) = O(\varepsilon^{K+1}),
\]

before caustics develop.
If ϕ and A satisfy eikonal equation and (high order) transport equations, then for
\[\tilde{u}_{GO} = A(t, x)e^{i\phi(t,x)/\varepsilon}, \]
we have
\[P^\varepsilon [\tilde{u}_{GO}] (t, x) = O(\varepsilon^{K+1}), \]
before caustics develop.

Hence,
\[\| u - \tilde{u}_{GO} \|_{L^2} \leq \frac{C}{\varepsilon} \| P^\varepsilon [\tilde{u}_{GO}] \|_{L^2} \sim O(\varepsilon^K). \]
(As expected since we cut off WKB expansion at $K - 1$.)
Example 2: Single Gaussian Beam

By earlier construction

\[P^\varepsilon [\tilde{u}_{GB}] (t, x) = O(\varepsilon^{K/2+1}). \]

Note here that since width of beam \(\sim \sqrt{\varepsilon}, \)

\[\| \tilde{u}_{GB} \|_{L^2} \sim \varepsilon^{n/4} \]

and

\[\| P^\varepsilon [\tilde{u}_{GB}] \|_{L^2} \sim \varepsilon^{K/2+1+n/4}. \]
Example 2: Single Gaussian Beam

By earlier construction

\[P^\varepsilon [\tilde{u}_{GB}] (t, x) = O(\varepsilon^{K/2+1}). \]

Note here that since width of beam \(\sim \sqrt{\varepsilon} \),

\[\|\tilde{u}_{GB}\|_{L^2} \sim \varepsilon^{n/4} \]

and

\[\|P^\varepsilon [\tilde{u}_{GB}]\|_{L^2} \sim \varepsilon^{K/2+1+n/4}. \]

Therefore, relative error is

\[\frac{\|u - \tilde{u}_{GB}\|_{L^2}}{\|\tilde{u}_{GB}\|_{L^2}} \leq \frac{C}{\varepsilon^{1+n/4}} \|P^\varepsilon [\tilde{u}_{GO}]\|_{L^2} \sim O(\varepsilon^{K/2}). \]
Example 2: Single Gaussian Beam

By earlier construction

\[P^\varepsilon [\tilde{u}_{GB}] (t, x) = O(\varepsilon^{K/2+1}). \]

Note here that since width of beam \(\sim \sqrt{\varepsilon}, \)

\[\|\tilde{u}_{GB}\|_{L^2} \sim \varepsilon^{n/4} \]

and

\[\|P^\varepsilon [\tilde{u}_{GB}]\|_{L^2} \sim \varepsilon^{K/2+1+n/4}. \]

Therefore, relative error is

\[\frac{\|u - \tilde{u}_{GB}\|_{L^2}}{\|\tilde{u}_{GB}\|_{L^2}} \leq \frac{C}{\varepsilon^{1+n/4}} \|P^\varepsilon [\tilde{u}_{GO}]\|_{L^2} \sim O(\varepsilon^{K/2}). \]

Proofs of this e.g. by [Lax, 57] for geometrical optics, [Ralston, 82] for Gaussian beams in wave setting and [Hagerdorn, 85] for Thawed Gaussians.
Superpositions of Gaussian beams

To approximate more general solutions, use superpositions of beams. Let \(v(t, y; z) \) be a beam starting from the point \(y = z \) and define

\[
u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz.
\]

\((n - \text{dimension}, K_0 - \text{compact set})\)
Superpositions of Gaussian beams

To approximate more general solutions, use superpositions of beams. Let $v(t, y; z)$ be a beam starting from the point $y = z$ and define

$$u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz.$$

(n – dimension, K_0 – compact set)

- By linearity of the Schrodinger equation a sum of solutions is also a solution.
Superpositions of Gaussian beams

To approximate more general solutions, use superpositions of beams. Let \(v(t, y; z) \) be a beam starting from the point \(y = z \) and define

\[
u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz.
\]

\((n – \text{dimension}, \ K_0 – \text{compact set}) \)

- By linearity of the Schrodinger equation a sum of solutions is also a solution.
- \(u_{GB}(t, y) \) is an asymptotic solution with initial data

\[
u_{GB}(0, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(0, y; z) dz.
\]

Sufficient to describe e.g. WKB data \(a(y)e^{i\phi(y)}/\varepsilon \).
Superpositions of Gaussian beams

To approximate more general solutions, use superpositions of beams. Let $v(t, y; z)$ be a beam starting from the point $y = z$ and define

$$u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) \, dz.$$

(n – dimension, K_0 – compact set)

- By linearity of the Schrodinger equation a sum of solutions is also a solution.
- $u_{GB}(t, y)$ is an asymptotic solution with initial data

$$u_{GB}(0, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(0, y; z) \, dz.$$

Sufficient to describe e.g. WKB data $a(y)e^{i\phi(y)/\varepsilon}$.

- Prefactor scales beams appropriately ($u_{GB} = O(1)$ if $v = O(1)$).
More general phase space superposition:

Let $v(t, y; z, p)$ be a beam starting from the point $y = z$ with momentum p and define

$$u_{GB}(t, y) = \varepsilon^{-n} \int_{\tilde{K}_0} v(t, y; z, p) dz dp.$$
Superpositions of Gaussian beams

More general phase space superposition:

Let \(v(t, y; z, p) \) be a beam starting from the point \(y = z \) with momentum \(p \) and define

\[
 u_{GB}(t, y) = \varepsilon^{-n} \int_{K_0} v(t, y; z, p) dz dp.
\]

\(u_{GB}(t, y) \) is an asymptotic solution with initial data

\[
 u_{GB}(0, y) = \varepsilon^{-n} \int_{K_0} v(0, y; z, p) dz dp.
\]

Can describe much more general data. (C.f. FBI transform.)
Numerical methods

- Approximate superposition integral by sum (trapezoidal rule)

\[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz \approx \varepsilon^{-\frac{n}{2}} \sum_{j} v(t, y; z_j) \Delta z^n. \]
Approximate superposition integral by sum (trapezoidal rule)

\[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz \approx \varepsilon^{-\frac{n}{2}} \sum v(t, y; z_j) \Delta z^n. \]

Lagrangian methods – Solve ODEs with standard methods. Similar to ray tracing but with all the additional Taylor coefficients computed along the rays \((M, a_j, \beta, \phi_\beta, \ldots)\) [Hill, Klimes, \ldots]
Numerical methods

- Approximate superposition integral by sum (trapezoidal rule)

\[
u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz \approx \varepsilon^{-\frac{n}{2}} \sum_j v(t, y; z_j) \Delta z^n.\]

- Lagrangian methods – Solve ODEs with standard methods. Similar to ray tracing but with all the additional Taylor coefficients computed along the rays \((M, a_j, \beta, \phi_\beta, \ldots)\) [Hill, Klimes, . . .]

- Eulerian methods – obtain parameters from solving PDEs on fixed grids [Leung, Qian, Burridge,07], [Jin, Wu, Yang,08], [Jin, Wu, Yang, Huang, 09], [Leung, Qian,09], [Qian,Ying,10], . . .

Wavefront methods – solve for parameters on a wave front [Motamed, OR,09]
Approximate superposition integral by sum (trapezoidal rule)

\[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z)dz \approx \varepsilon^{-\frac{n}{2}} \sum_{j} v(t, y; z_j) \Delta z^n. \]

Lagrangian methods – Solve ODEs with standard methods. Similar to ray tracing but with all the additional Taylor coefficients computed along the rays
\((M, a_j, \beta, \phi_\beta, \ldots)\) [Hill, Klimes, ...]

Eulerian methods – obtain parameters from solving PDEs on fixed grids [Leung, Qian, Burridge,07], [Jin, Wu, Yang,08], [Jin, Wu, Yang, Huang, 09], [Leung, Qian,09], [Qian,Ying,10],...

Wavefront methods – solve for parameters on a wave front [Motamed, OR,09]
Numerical methods

\[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) \, dz \approx \varepsilon^{-\frac{n}{2}} \sum v(t, y; z_j) \Delta z^n. \]

Numerical issues

- Cost \(\sim \) number of beams since each beam is \(O(1) \).
 - For accuracy need \(\Delta z \sim \sqrt{\varepsilon} \sim \) width of beams.
 - \(\Rightarrow \) cost \(\sim O(\varepsilon^{-n/2}) \)
- C.f. direct solution of wave equations, at least \(O(\varepsilon^{-(n+1)}) \)
Numerical methods

\[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z)dz \approx \varepsilon^{-\frac{n}{2}} \sum v(t, y; z_j)\Delta z^n. \]

Numerical issues

- Cost \sim number of beams since each beam is \(O(1) \).
 For accuracy need \(\Delta z \sim \sqrt{\varepsilon} \sim \text{width of beams} \).
 \[\Rightarrow \text{cost} \sim O(\varepsilon^{-n/2}) \]
 C.f. direct solution of wave equations, at least \(O(\varepsilon^{-(n+1)}) \)

- For phase space superposition would get \(\sim O(\varepsilon^{-n}) \) but can often be improved (e.g. support in \(p \sim \sqrt{\varepsilon} \) for WKB data)
Numerical methods

\[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz \approx \varepsilon^{-\frac{n}{2}} \sum v(t, y; z_j) \Delta z^n. \]

Numerical issues

- Cost \(\sim \) number of beams since each beam is \(O(1) \).
 - For accuracy need \(\Delta z \sim \sqrt{\varepsilon} \sim \) width of beams.
 - \(\Rightarrow \) cost \(\sim \) \(O(\varepsilon^{-n/2}) \)
 - C.f. direct solution of wave equations, at least \(O(\varepsilon^{-(n+1)}) \)

- For phase space superposition would get \(\sim \) \(O(\varepsilon^{-n}) \) but can often be improved (e.g. support in \(p \sim \sqrt{\varepsilon} \) for WKB data)

- Spreading of beams
 - Wide beams \(\Rightarrow \) large Taylor approximation errors
Numerical methods

\[u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz \approx \varepsilon^{-\frac{n}{2}} \sum v(t, y; z_j) \Delta z^n. \]

Numerical issues

- Cost \(\sim\) number of beams since each beam is \(O(1)\).
 For accuracy need \(\Delta z \sim \sqrt{\varepsilon} \sim\) width of beams.
 \(\Rightarrow\) cost \(\sim\) \(O(\varepsilon^{-n/2})\)
 C.f. direct solution of wave equations, at least \(O(\varepsilon^{-(n+1)})\)

- For phase space superposition would get \(\sim\) \(O(\varepsilon^{-n})\) but can often be improved (e.g. support in \(p \sim \sqrt{\varepsilon}\) for WKB data)

- Spreading of beams
 Wide beams \(\Rightarrow\) large Taylor approximation errors

- Initial data approximation
 Many degrees of freedom. Can have huge impact on accuracy at later times.
Approximation Errors Superpositions

Norm estimates of $\|u - u_{GB}\|$ only rather recently derived
[Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, ...]

Need to check how well u_{GB} satisfies equation

$$P^\varepsilon[u_{GB}] := i\varepsilon \partial_t u_{GB} + \varepsilon^2 \Delta u_{GB} - Vu_{GB}, \quad u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz.$$
Norm estimates of $||u - u_{GB}||$ only rather recently derived [Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, ...]

Need to check how well u_{GB} satisfies equation

$$P^\varepsilon[u_{GB}] := i\varepsilon \partial_t u_{GB} + \varepsilon^2 \Delta u_{GB} - Vu_{GB}, \quad u_{GB}(t, y) = \varepsilon^{-n/2} \int_{K_0} v(t, y; z) dz.$$

By linearity,

$$P^\varepsilon[u_{GB}] = \varepsilon^{-n/2} \int_{K_0} P^\varepsilon[v(t, y; z)] dz.$$
Norm estimates of $||u - u_{GB}||$ only rather recently derived
[Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, ...]

Need to check how well u_{GB} satisfies equation

$$P^{\varepsilon}[u_{GB}] := i\varepsilon \partial_t u_{GB} + \varepsilon^2 \Delta u_{GB} - Vu_{GB}, \quad u_{GB}(t, y) = \varepsilon^{-n/2} \int_{K_0} v(t, y; z) dz.$$

- By linearity,

$$P^{\varepsilon}[u_{GB}] = \varepsilon^{-n/2} \int_{K_0} P^{\varepsilon}[v(t, y; z)] dz.$$

- Coarse estimate gives

$$||P^{\varepsilon}[u_{GB}]|| \leq \varepsilon^{-n/2} \int_{K_0} ||P^{\varepsilon}[v(t, y; z)]|| dz \leq C\varepsilon^{-n/2} \varepsilon^{K/2 + 1 + n/4}.$$
Approximation Errors Superpositions

Norm estimates of $\|u - u_{GB}\|$ only rather recently derived [Swart, Rousse, Liu, Ralston, Tanushev, Bougacha, Alexandre, ...]

Need to check how well u_{GB} satisfies equation

$$P^\varepsilon[u_{GB}] := i\varepsilon \partial_t u_{GB} + \varepsilon^2 \Delta u_{GB} - Vu_{GB}, \quad u_{GB}(t, y) = \varepsilon^{-\frac{n}{2}} \int_{K_0} v(t, y; z) dz.$$

- By linearity,
 $$P^\varepsilon[u_{GB}] = \varepsilon^{-n/2} \int_{K_0} P^\varepsilon[v(t, y; z)] dz.$$

- Coarse estimate gives
 $$\|P^\varepsilon[u_{GB}]\| \leq \varepsilon^{-n/2} \int_{K_0} \|P^\varepsilon[v(t, y; z)]\| dz \leq C\varepsilon^{-n/2} \varepsilon^{K/2 + 1 + n/4}.$$

- Gives error estimate for u_{GB}
 $$\|u - u_{GB}\| \leq \frac{C}{\varepsilon} \|P^\varepsilon[u_{GB}]\| \leq C\varepsilon^{K/2 - n/4}.$$
Basic estimate for the Schrödinger equation, [Liu, Ralston, 2010],

\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_{L^2} \leq O(\varepsilon^{K/2-n/4}) . \]

is not sharp. E.g. it does not predict convergence for first order beams in 2D.
Basic estimate for the Schrödinger equation, [Liu, Ralston, 2010],
\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_{L^2} \leq O(\varepsilon^{K/2-n/4}) . \]
is not sharp. E.g. it does not predict convergence for first order beams in 2D.

- Some improvement for the wave equation [Liu, Ralston, 2009],
\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_{E} \leq O(\varepsilon^{K/2+(1-n)/4}) . \]
but still no convergence for first order beams for \(n \) large enough
Basic estimate for the Schrödinger equation, [Liu, Ralston, 2010],

\[
\|u(t, \cdot) - u_{GB}(t, \cdot)\|_{L^2} \leq O(\varepsilon^{K/2-n/4}).
\]

is not sharp. E.g. it does not predict convergence for first order beams in 2D.

- Some improvement for the wave equation [Liu, Ralston, 2009],

\[
\|u(t, \cdot) - u_{GB}(t, \cdot)\|_{E} \leq O(\varepsilon^{K/2+(1-n)/4}).
\]

but still no convergence for first order beams for \(n\) large enough

- The dependence on dimensions is introduced when estimating the behavior of the solution at caustics. Artificial?
Basic estimate for the Schrödinger equation, [Liu, Ralston, 2010],

\[\|u(t, \cdot) - u_{GB}(t, \cdot)\|_{L^2} \leq O(\varepsilon^{K/2-n/4}) \]

is not sharp. E.g. it does not predict convergence for first order beams in 2D.

- Some improvement for the wave equation [Liu, Ralston, 2009],

\[\|u(t, \cdot) - u_{GB}(t, \cdot)\|_{E} \leq O(\varepsilon^{K/2+(1-n)/4}) \]

but still no convergence for first order beams for \(n \) large enough.

- The dependence on dimensions is introduced when estimating the behavior of the solution at caustics. Artificial?

- Problem: The estimate

\[|P^\varepsilon[u_{GB}]| \leq \varepsilon^{-n/2} \int_{K_0} |P^\varepsilon[v(t, y; z)]|dz \]

ignores cancellations between neighbouring beams. Very bad except at caustics where beams interfere constructively.
Approximation Errors Superpositions

Basic estimate for the Schrödinger equation, [Liu, Ralston, 2010],

\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_{L^2} \leq O(\varepsilon^{K/2-n/4}) . \]

For phase space superposition, results with no dimensional dependence:

For the wave equation with phase space superposition,

\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_{E} \leq O(\varepsilon^{K/2}) . \]

For Frozen Gaussian Approximation,

\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_{L^2} \leq O(\varepsilon^{K/2-n/4}) . \]

[Bougacha, Akian, Alexandre, 2009]

[Swart, Rousse, 2009]
Approximation Errors Superpositions

Basic estimate for the Schrödinger equation, [Liu, Ralston, 2010],

$$\|u(t, \cdot) - u_{GB}(t, \cdot)\|_{L^2} \leq O(\varepsilon^{K/2-n/4}).$$

For phase space superposition, results with no dimensional dependence:

- For the wave equation with phase space superposition,
 $$\|u(t, \cdot) - u_{GB}(t, \cdot)\|_{E} \leq O(\varepsilon^{K/2}).$$

 [Bougacha, Akian, Alexandre, 2009]
Approximation Errors Superpositions

Basic estimate for the Schrödinger equation, [Liu, Ralston, 2010],

\[\|u(t, \cdot) - u_{GB}(t, \cdot)\|_{L^2} \leq O(\varepsilon^{K/2-n/4}) . \]

For phase space superposition, results with no dimensional dependence:

- For the wave equation with phase space superposition,

\[\|u(t, \cdot) - u_{GB}(t, \cdot)\|_E \leq O(\varepsilon^{K/2}) . \]

[Bougacha, Akian, Alexandre, 2009]

- For Frozen Gaussian Approximation,

\[\|u(t, \cdot) - u_{GB}(t, \cdot)\|_{L^2} \leq O(\varepsilon^{K/2}) . \]

[Swart, Rousse, 2009]
Main result

Theorem

For scalar, strictly hyperbolic m-th order PDEs

$$
\varepsilon^{m-1} \left(\sum_{\ell=0}^{m-1} \| \partial^\ell_t [u(t, \cdot) - u_{GB}(t, \cdot)] \|_{H^{m-\ell-1}}^2 \right)^{1/2} \leq O(\varepsilon^{K/2}).
$$

For the wave equation,

$$
\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{K/2}).
$$

For the Schrödinger equation,

$$
\| u(t, \cdot) - u_{GB}(t, \cdot) \|_{L^2} \leq O(\varepsilon^{K/2}).
$$
Main result

Theorem

For scalar, strictly hyperbolic m-th order PDEs

\[
\varepsilon^{m-1} \left(\sum_{\ell=0}^{m-1} \| \partial_t^\ell [u(t, \cdot) - u_{GB}(t, \cdot)] \|_{H^{m-\ell-1}}^2 \right)^{\frac{1}{2}} \leq O(\varepsilon^{K/2}).
\]

For the wave equation,

\[
\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{K/2}).
\]

For the Schrödinger equation,

\[
\| u(t, \cdot) - u_{GB}(t, \cdot) \|_{L^2} \leq O(\varepsilon^{K/2}).
\]

- Superposition in physical space. Initial data approximated on a submanifold of phase space (WKB data).
Main result

Theorem

For scalar, strictly hyperbolic m-th order PDEs

$$
\varepsilon^{m-1} \left(\sum_{\ell=0}^{m-1} \left\| \partial_t^\ell [u(t, \cdot) - u_{GB}(t, \cdot)] \right\|_{H^{m-\ell-1}}^2 \right)^{\frac{1}{2}} \leq O(\varepsilon^{K/2}).
$$

For the wave equation,

$$
\|u(t, \cdot) - u_{GB}(t, \cdot)\|_E \leq O(\varepsilon^{K/2}).
$$

For the Schrödinger equation,

$$
\|u(t, \cdot) - u_{GB}(t, \cdot)\|_{L^2} \leq O(\varepsilon^{K/2}).
$$

- Superposition in physical space. Initial data approximated on a submanifold of phase space (WKB data).
- Convergence of all beams independent of dimension and presence of caustics.
Sketch of proof

For all the PDEs $P[u] = 0$ considered we have an energy estimate of the type

$$\|u_{GB}(t, \cdot) - u(t, \cdot)\|_S \leq \|u_{GB}(0, \cdot) - u(0, \cdot)\|_S + C\varepsilon^q \int_0^t \|P[u_{GB}](\tau, \cdot)\|_{L^2} d\tau,$$

where $\|\cdot\|_S$ is some appropriate norm and q is an integer. (E.g. Schrodinger $S = L^2, q = -1$, wave equation $S = E, q = 1$.)
Sketch of proof

- For all the PDEs $P[u] = 0$ considered we have an energy estimate of the type

$$
\|u_{GB}(t, \cdot) - u(t, \cdot)\|_S \leq \|u_{GB}(0, \cdot) - u(0, \cdot)\|_S + C\varepsilon^q \int_0^t \|P[u_{GB}](\tau, \cdot)\|_{L^2} d\tau,
$$

where $\| \cdot \|_S$ is some appropriate norm and q is an integer. (E.g. Schrödinger $S = L^2$, $q = -1$, wave equation $S = E$, $q = 1$.)

- For all PDEs considered, we can write

$$
P[u_{GB}](t, y) = \varepsilon^{K/2-q} \sum_{j=1}^J \varepsilon^{r_j} T_j^{\varepsilon}[f_j](t, y) + O(\varepsilon^\infty),
$$

where $r_j \geq 0$, J finite and $f_j \in L^2$ (all independent of ε).

$T_j^{\varepsilon} : L^2 \rightarrow L^2$ belongs to a class of oscillatory integral operators.
Sketch of proof

For all the PDEs $P[u] = 0$ considered we have an energy estimate of the type

$$\|u_{GB}(t, \cdot) - u(t, \cdot)\|_S \leq \|u_{GB}(0, \cdot) - u(0, \cdot)\|_S + C \varepsilon^q \int_0^t \|P[u_{GB}](\tau, \cdot)\|_{L^2} d\tau,$$

where $\|\cdot\|_S$ is some appropriate norm and q is an integer. (E.g. Schrodinger $S = L^2$, $q = -1$, wave equation $S = E$, $q = 1$.)

For all PDEs considered, we can write

$$P[u_{GB}](t, y) = \varepsilon^{K/2-q} \sum_{j=1}^J \varepsilon^{r_j} T_j^\varepsilon [f_j](t, y) + O(\varepsilon^\infty),$$

where $r_j \geq 0$, J finite and $f_j \in L^2$ (all independent of ε).

$T_j^\varepsilon : L^2 \rightarrow L^2$ belongs to a class of oscillatory integral operators.

Together we get (if initial data exact)

$$\|u_{GB}(t, \cdot) - u(t, \cdot)\|_S \leq C(T) \varepsilon^{K/2} \sum_{j=1}^J \varepsilon^{r_j} \|T_j^\varepsilon\|_{L^2} \|f_j\|_{L^2} + O(\varepsilon^\infty).$$
Sketch of proof, cont.

We have

\[\| u_{GB}(t, \cdot) - u(t, \cdot) \|_S \leq C(T)\varepsilon^{K/2} \sum_{j=1}^{J} \| T_j^\varepsilon \|_{L^2} + \mathcal{O}(\varepsilon^{\infty}) \]

where, in its simplest form,

\[T^\varepsilon [w](t, y) := \varepsilon^{-n+|\alpha|/2} \int_{K_0} w(z)(y - x(t; z))^{\alpha} e^{i\phi(t, y - x(t; z); z)/\varepsilon} \, dz, \]

for some multi-index \(\alpha \), Gaussian beam phase \(\phi \) and geometrical optics rays \(x(t; z) \) with \(x(0; z) = z \).
Sketch of proof, cont.

We have

\[\| u_{GB}(t, \cdot) - u(t, \cdot) \|_S \leq C(T)\varepsilon^{K/2} \sum_{j=1}^{J} \| T^\varepsilon_j \|_{L^2} + O(\varepsilon^{\infty}) \]

where, in its simplest form,

\[T^\varepsilon[w](t, y) := \varepsilon^{-\frac{n+|\alpha|}{2}} \int_{K_0} w(z)(y - x(t; z))^\alpha e^{i\phi(t, y - x(t; z); z)/\varepsilon} dz, \]

for some multi-index \(\alpha \), Gaussian beam phase \(\phi \) and geometrical optics rays \(x(t; z) \) with \(x(0; z) = z \).

Result follows if we prove that \(T^\varepsilon \) is bounded in \(L^2 \) independent of \(\varepsilon \),

\[\| T^\varepsilon \|_{L^2} \leq C. \]

This is the key estimate of our proof.
Sketch of proof, cont.

Estimate of $||\mathcal{T}^\varepsilon||_{L^2}$, where

$$\mathcal{T}^\varepsilon[w](t, y) := \varepsilon^{-\frac{n+|\alpha|}{2}} \int_{K_0} w(z)(y - x(t; z))^{\alpha} e^{i\phi(t, y - x(t; z); z)/\varepsilon} dz.$$

Main difficulty: no globally invertible map $x(0; z) = z \rightarrow x(t; z)$ because of caustics.
Sketch of proof, cont.

Estimate of $||\mathcal{T}^\varepsilon||_{L^2}$, where

$$\mathcal{T}^\varepsilon[w](t, y) := \varepsilon^{-\frac{n+|\alpha|}{2}} \int_{K_0} w(z)(y - x(t; z))^\alpha e^{i\phi(t, y - x(t; z); z)}/\varepsilon \, dz.$$

- Main difficulty: no globally invertible map $x(0; z) = z \rightarrow x(t; z)$ because of caustics.

- Mapping $(x(0; z), p(0; z)) \rightarrow (x(t; z), p(t; z))$ is however globally invertible and smooth. Gives the "non-squeezing" property,

$$c_1|z - z'| \leq |p(t; z) - p(t; z')| + |x(t; z) - x(t; z')| \leq c_2|z - z'|.$$

Allows us to use stationary phase arguments close to caustics, and carefully control cancellations of oscillations there (similar to [Swart,Rousse], [Bougacha, Akian, Alexandre]).
Estimate of $||\mathcal{T}^\varepsilon||_{L^2}$, where

$\mathcal{T}^\varepsilon[w](t, y) := \varepsilon^{-\frac{n+|\alpha|}{2}} \int_{K_0} w(z)(y - x(t; z))^\alpha e^{i\phi(t, y - x(t; z); z)}/\varepsilon dz.$

- Main difficulty: no globally invertible map $x(0; z) = z \rightarrow x(t; z)$ because of caustics.
- Mapping $(x(0; z), p(0; z)) \rightarrow (x(t; z), p(t; z))$ is however globally invertible and smooth. Gives the "non-squeezing" property,

$$c_1|z - z'| \leq |p(t; z) - p(t; z')| + |x(t; z) - x(t; z')| \leq c_2|z - z'|.$$

- Allows us to use stationary phase arguments close to caustics, and carefully control cancellations of oscillations there (similar to [Swart, Rousse], [Bougacha, Akian, Alexandre]).
Approximation errors

Remarks

The estimate

$$\|u(t, \cdot) - u_{GB}(t, \cdot)\|_{E} \leq O(\varepsilon^{K/2})$$

is sharp for individual beams (relative error). But for superpositions?
The estimate
\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{K/2}) \]

is sharp for individual beams (relative error). But for superpositions?

- Predicts convergence rate of first order beam to be only \(O(\sqrt{\varepsilon}) \). These beams are based on same high frequency approximation as geometrical optics which has \(O(\varepsilon) \) accuracy.
Approximation errors

Remarks

The estimate

$$\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{K/2})$$

is sharp for individual beams (relative error). But for superpositions?

- Predicts convergence rate of first order beam to be only $O(\sqrt{\varepsilon})$. These beams are based on same high frequency approximation as geometrical optics which has $O(\varepsilon)$ accuracy.
- For the Helmholtz case we have proved [Motamed, OR] that

$$\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{\lceil K/2 \rceil})$$

for the Taylor expansion part of the error away from caustics. This gives $O(\varepsilon)$ for first order beams.
The estimate

\[\|u(t, \cdot) - u_{GB}(t, \cdot)\|_E \leq O(\varepsilon^{K/2}) \]

is sharp for individual beams (relative error). But for superpositions?

- Predicts convergence rate of first order beam to be only \(O(\sqrt{\varepsilon})\). These beams are based on same high frequency approximation as geometrical optics which has \(O(\varepsilon)\) accuracy.

- For the Helmholtz case we have proved [Motamed, OR] that

\[\|u(t, \cdot) - u_{GB}(t, \cdot)\|_E \leq O(\varepsilon^{\lceil K/2 \rceil}) \]

for the Taylor expansion part of the error away from caustics. This gives \(O(\varepsilon)\) for first order beams.

- More error cancellations coming in for odd order beams? \((\Rightarrow \text{no gain in using even order beams})\)
The estimate
\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{K/2}) \]
is sharp for individual beams (relative error). But for superpositions?

- Predicts convergence rate of first order beam to be only \(O(\sqrt{\varepsilon}) \). These beams are based on same high frequency approximation as geometrical optics which has \(O(\varepsilon) \) accuracy.
- For the Helmholtz case we have proved [Motamed, OR] that
\[\| u(t, \cdot) - u_{GB}(t, \cdot) \|_E \leq O(\varepsilon^{\lceil K/2 \rceil}) \]
for the Taylor expansion part of the error away from caustics. This gives \(O(\varepsilon) \) for first order beams.
- More error cancellations coming in for odd order beams? (\(\Rightarrow \) no gain in using even order beams)
- Numerical experiments also in the time-dependent case suggests a better rate for odd order beams
Numerical examples

Cusp caustic

Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]
\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Numerical examples
Cusp caustic

Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]

\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Numerical examples

Cusp caustic

Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]
\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Numerical examples
Cusp caustic

Consider the test case where

$$\Phi(0, y) = -y_1 + y_2^2,$$

$$A(0, y) = e^{-10|y|^2}.$$

- Cusp caustic at $t = 0.5$
- Two fold caustics at $t > 0.5$
Numerical examples

Cusp caustic

Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]
\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]
\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Numerical examples

Cusp caustic

Consider the test case where

\[
\Phi(0, y) = -y_1 + y_2^2,
\]

\[
A(0, y) = e^{-10|y|^2}.
\]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Numerical examples

Cusp caustic

Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]
\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Consider the test case where

$$\Phi(0, y) = -y_1 + y_2^2,$$

$$A(0, y) = e^{-10|y|^2}.$$

- **Cusp caustic at**
 - $t = 0.5$
- **Two fold caustics at**
 - $t > 0.5$
Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]
\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Consider the test case where

\[\Phi(0, y) = -y_1 + y_2^2, \]
\[A(0, y) = e^{-10|y|^2}. \]

- Cusp caustic at \(t = 0.5 \)
- Two fold caustics at \(t > 0.5 \)
Numerical examples
Cusp caustic, convergence

\begin{align*}
\|u_k(0.25,\cdot)-u_F(0.25,\cdot)\|_E \\
\|u_k(0.75,\cdot)-u_F(0.75,\cdot)\|_E
\end{align*}

\begin{figure}
\centering
\begin{subfigure}{0.45\textwidth}
\includegraphics[width=\textwidth]{plot1}
\end{subfigure}
\begin{subfigure}{0.45\textwidth}
\includegraphics[width=\textwidth]{plot2}
\end{subfigure}
\end{figure}
Numerical examples

Cusp caustic, convergence
For any y away from caustics we can prove that

$$|u_{GB}(t, y) - u(t, y)| \leq C(y)\varepsilon^{[K/2]}.$$
For any y away from caustics we can prove that

$$|u_{GB}(t, y) - u(t, y)| \leq C(y)\varepsilon^{K/2}.$$

1. Prove error estimates in higher order Sobolev spaces

$$\|u_{GB}(t, \cdot) - u(t, \cdot)\|_{H^s} = O(\varepsilon^{K/2-s}).$$
For any \(y \) away from caustics we can prove that
\[
|u_{GB}(t, y) - u(t, y)| \leq C(y)\varepsilon^{[K/2]}.
\]

1. Prove error estimates in higher order Sobolev spaces
\[
\|u_{GB}(t, \cdot) - u(t, \cdot)\|_{H^s} = O(\varepsilon^{K/2-s}).
\]

2. Use Sobolev inequalities and \(K + m \) order beams \(u_{GB}^{K+m} \) to show that
\[
|u_{GB}^{K+m}(t, \cdot) - u(t, \cdot)|_{L^\infty} \leq \varepsilon^{[K/2]}.
\]
for large enough \(m \).
For any y away from caustics we can prove that

$$|u_{GB}(t, y) - u(t, y)| \leq C(y)\varepsilon^{[K/2]}.$$

1. Prove error estimates in higher order Sobolev spaces

$$||u_{GB}(t, \cdot) - u(t, \cdot)||_{H^s} = O(\varepsilon^{K/2-s}).$$

2. Use Sobolev inequalities and $K + m$ order beams u_{GB}^{K+m} to show that

$$|u_{GB}^{K+m}(t, \cdot) - u(t, \cdot)|_{L^\infty} \leq \varepsilon^{[K/2]}.$$

for large enough m.

3. Consider difference between K order and $K + m$ order beams,

$$u_{GB}^{K+m} - u_{GB}^K = \varepsilon^{K/2} \sum T_j^\varepsilon f_j.$$
For any y away from caustics we can prove that

$$|u_{GB}(t, y) - u(t, y)| \leq C(y)\varepsilon^{[K/2]}.$$

1. Prove error estimates in higher order Sobolev spaces

$$\|u_{GB}(t, \cdot) - u(t, \cdot)\|_{H^s} = O(\varepsilon^{K/2-s}).$$

2. Use Sobolev inequalities and $K + m$ order beams u_{GB}^{K+m} to show that

$$|u_{GB}^{K+m}(t, \cdot) - u(t, \cdot)|_{L^\infty} \leq \varepsilon^{[K/2]}.$$

for large enough m.

3. Consider difference between K order and $K + m$ order beams,

$$u_{GB}^{K+m} - u_{GB}^{K} = \varepsilon^{K/2} \sum T_j^{\varepsilon} f_j.$$

4. Estimate T_j^{ε} in max norm.