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Summary. The Car-Parrinello (CP) approach to ab initio molecular dynam-
ics serves as an approximation to time-dependent Born-Oppenheimer (BO)
calculations. It replaces the explicit minimization of the energy functional
by a fictitious Newtonian dynamics and therefore introduces an artificial
mass parameterwhich controls the electronic motion. A recent theoretical
investigation shows that the CP-error, i.e., the deviation of the CP—solution
from the BO-solutiordecreasetike 1.'/2 asymptotically. Since the compu-
tational efforincreasedike ;. —'/2, the choice of: has to find a compromise
between efficiency and accuracy. The asymptotical resultis used in this paper
to construct an easily implemented algorithm which automatically controls
- the parametet is repeatedly adapted during the simulation by choosing

1 as large as possible while pushing an error measure below a user-given
tolerance. The performance and reliability of the algorithm is illustrated by
a typical example.
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Introduction

The most prominent approach to approximative ab—initio molecular dy-
namic calculations is based on thgantum adiabatic approximatioalso
called the time-dependeBbrn-Oppenheimeaipproximation [1]. Here, one
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exploits the large mass ratio between ions and electrons by describing the
ions classically and the electrons quantally. The equation governing the ionic
movement is obtained by a semiclassical limit [4], i.e., becomes a classical
Newtonian equation of motion. The electronic configuration is given by the
ground state of the corresponding energy functional, i.e., by the state of
minimal energy. Thus, a straightforward numerical simulation of the adia-
batic approach requires the solution of a minimization problem for a highly
dimensional functionait eachtime step of the simulation. As noted in [7],
even for very small realistic time steps, state-of-the-art minimization algo-
rithms often require an order of ten iterations to converge which prevents
this approach from being feasible for more complicated systems.

In 1985, Car and Parrinello [3] presented their method which largely
extended the set of treatable systems. They replaced the adiabatic motion
of the electrons by anothéictitious classical Newtonian dynamics which
oscillates around the energy minimum. Therefore, an artificial, but free pa-
rameter — the fictitious “electronic masg’— is introduced. In [2], the
present authors in detail discussed the connection of the CP approach with
the quantum adiabatic approximation. In particular, it was shown that, under
a crucial nondegeneracy condition, the deviation between the CP solution
and the quantum adiabatic solution is of ordkp.'/?).

In an inspiring paper [7], Pastore, Smargiassi, and Buda illustrated that
constitutes a kind of control parameter. In this paper we pick up this idea and
exploit the approximation result from [2] to construct an algorithm which
automaticallycontrols the value ofi with respect to a predefined accuracy
requirement for the CP solution.

1. Theoretical background

In the quantum adiabatic model the equations of motion are given by

ou
® wpo + W)y,
dq q=qBO
whereq = (q1, ..., g,) denotes the ionic positions and the potentiais

given by minimizing the electronic energy potentig|
Ulg) = min E(¢); q).

The minimum is taken over all orthonormattupley = (1, ..., ¥,,). The
energy functional is given for instance by the Kohn-Sham scheme [6] in the
context of density functional theory (cf. [2] for details). The correspond-
ing solution will always be denotegP© and the corresponding electronic
ground state ag®® and, in particular, the initial state”° (t = 0) asy.
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The fictitious Newtonian dynamics introduced by the alternative CP—
approach is given by the Lagrangian

Lcp = %Z Wy, )+ ZMI GG—EW, )+ > Aji (W5, 0k) — 0ji)
=1

j7k:]‘

where(-, -) denotes the integral scalar product, the wave functionare
regarded as classical field&]; are the ionic masses andis the named
masslike parameter introduced by the method. The Lagrange parameters
Aji, ensure the orthonormality of the wave functions. The total energy of
the CP—method contains an “unphysical” part, the so called “fake” kinetic
energy

K-35

The second order equations of motion belongingtg are

M\t

(15, 5)-

E(yH;
MgH + w =0,
(9q q=q*
w SE(; g* m '
/“b;"‘w :Z/ljk¢g, j=1....m,
(W) WEI k=1
<77[}N Q;Z)]g> ]k7 j,k=1,...,m

whered /§y* denotes the functional derivative Bfwith respect to the state
1 and the superscript the explicit dependence on the “control parameter”

The accuracy of the Car-Parrinello soluti@ft, ¢*) for giveny in com-
parison with the quantum adiabatic modeF©, /%) is given by:

Ay = 1g"(t) = a2 (O] + 9 (1) = v @),

with appropriate norms- | and|| - ||.

Let T, be the maximal time for which the ground statef#ff), ¢°) is
still nondegenerate. Befof& is reached, the quantitative influence.obn
the accuracy is described by the followingnvergence resulthich holds
under the condition that the evolution starts in the initial ground state with
vanishing velocity, i.e " (0) = vy andy*(0) =

For every timel" with 0 < T' < T, there is au, > 0 and a constant
C > 0 so that

A, <Opt?  0<t<T

and the fake kinetic energy satisfies

) Kf=Cpr@P<on 0<t<T
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for all values of the parameter satisfying0 < p < ..

For the case of the Kohn—Sham functiofal= Ex g, a rigorous math-
ematical proof of this assertion is given in the work [2] of the authors.

The reader should note, that the convergence results are only valid for
timesT < T, i.e., before the first degeneracy of the electronic ground state
may occur. AfterT, the state)* can largely deviate from the ground state
for all choices ofy > 0. Then, the validity of the Car—Parrinello approach
and the quantum adiabatic approach itself are at least questionable [2,7].

2. The automatic control scheme

In some cases, CP-simulations with fiyedevelop large deviations from
the BO—dynamics even if initially. is small enough: The fake energgjﬁ
and with it the errord,, accumulatively increase after some time, an effect
which may lead to an explosion &f and, thus, may destroy any reliable
information. Obviously, this can happen if the ground state gets degenerate.
But it can also be observed if the energy gap between the ground state
and the first excited state of the electronic configuration gets too small in
the course of the evolution of the system (cf. [7] and the next section, in
particular Fig. 3). Here, “too small” means “too small in comparison with
the u—value chosen”, because, according to the theoretical statement from
above, we can avoid the error increase and baiificand A, by choosing
1 small enough. In this sectionia-controlling algorithm will be explained
which is designed to avoid model instabilities away from true ground state
degeneracies.

The algorithm is based on the following idea: Compute an appropri-
ate choiceu by limiting the maximal value of the fake enerdy; in the
simulation intervall = [t¢, t1], i.e., choose: so that

1 .
K = = 2 <
3) Ky (1) = max Sp¢(1)]° < TOL,

where the toleranc®OL is predefined by the user. The fake energy can
easily be computed during the simulation and can be used as a monitor for
the errorA,,. The construction of the scheme similar to that designed for
controlling the stepsize in the numerical integration of ordinary differential
equations (cf. [5]).

Let the initial electronic state for a CP—simulation on the time intefval
be the initial ground state and let its velocity be zero. Moreover, we assume
for a moment that we still have computédf“’ (I) forapy < ps With g,
from the statement above. Then, according to (2),

TOL
(4) = —p b
KPI)™



Adaptive accuracy control for Car-Parrinello simulations 183

will be near the optimal choice for realizing (3) dnNow, let the total time
interval of interest/;., be decomposed in several subintenfals . ., Iy
without overlap. The algorithm works successively on all subintedeby
exploiting (4) in two different situations:

1. Step rejectiontf a CP—simulation or; usingy produces the result
K}‘O(Ij) > TOL, we have to reject this attempt. Then, a newproposal is
computed using (4) and the simulation bnis repeated. The results of the
previous simulation are neglected.

2. p-choice for the next stepAssume that the simulation of) using
w; has been successful, i.é(,}‘j (I;) < TOL. Via (4), we could compute
anotheru—proposalu,. which then is expected to be optimal 6 Instead
of repeating the successful calculation bn we switch to the next step,
hope that the situation does not change too much, ang.uas the initial
p—value for the simulation ofy ;. Because (4) leads fo. > 1; and alarge
increase inx may be dangerous, this increase is limited, i.e., (4) is replaced

by, e.g.,
u—min<2 TOL) L
LK (1) g

With respect to reliability it is advisable to add an explicit minimiza-
tion of E(1, q) after each subinterval; = [t;,t; + AT]. Theoretically
this is necessary, because the construction of the algorithm depends on the
assumption that the initial electronic state for the simulatiod,on is the
momentary ground state. But if the tolerarié®L is small enough, the de-
viation of the final state)(¢; + AT') at the end of the simulation af) from
the corresponding ground state is also small and the minimization may be
omitted.

After each subinterval the accumulated fake energy is skipped by starting
at the next subinterval with the velocity = 0. This leads to a small loss of
total energy, which is of no importance as londl&3L is small enough and
there are not too many subintervals. If this is not the case, the skipped fake
energy can be added to the kinetic energy of the ions by slightly increasing
their momenta.

3. lllustrative examples

In [7], a simple linear two-level model is constucted whazhm grano salis
contains all important features of the Car-Parrinello method. In this model,
1) is a simple two-dimensional one-electron state, i.e.,qitis- 1, and the
electronic energy functional is quadratic:

E(,q) = (A(Q)¥,v),
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Fig. 1. Time-dependence of the gapX in the two test cases. Left: Decreasing gap with a
level crossing near=4000. Right: Oscillating gap with minimal gap size near

with a2 x 2-matrix A. The time-dependence of the two eigenvaldgs=
Xo(g) and Ay = Ai(q) of A along the solutiony = ¢(t) is essential for
the evolution: As long as, < \; the ground state/’(q) of E(x, q) is
nondegeneraterhus, quantum adiabatic and CP-simulations do only make
sense as long as tle@ergy gapAX = A1 — Ay remaingpositive

In this simple case the Car-Parrinello equations of motion can explicitly
be transformed into a system without constraints (cf. [7] p. 6344 and be
aware of some typos):

1 = —Go g sin(6 — 6p)
M(]é(] = Go g sin(9 — 90) — w%MQHO
M, = Gocos(0 — 0y) — w?M,G% (g — 1),

where the anglé represents the statevia ) = (cos/2,sin0/2)T, andg
andéd, mimic the ionic motions. Whilg directly gives us the gap via

g(t)
AN(t) 400) ANX(0),

the angled, represents the ground staté = (cos y/2,sin 6y/2)" of E.
Thus, the differencé — 6, measures the deviation gf from the ground
stateq)?.

As arule of thumb one can state that, if the erfigrshould remain small,
the parameter. must decrease with the minimal gap size. For studying the
effects of a changing gap, we consider two illustrative examples: one with a
slowly decreasing gap leading to a level crossing (“crossing example™), and
another with a periodically closing, but always positive gap (“oscillating
gap example”), cf. Fig. 1. The parameters of these cases are given in Table
1. In both examples all initial velocities are zero ah@) = 65(0) = 1.
All magnitudes are given in atomic units (cf. [7]). For both examples have
also been consider in [7] for a constant= 300. Therein, it has been
observed that\,, and the corresponding fake energy strongly increase in
both examples. This problem is automatically avoided by using the proposed
control algorithm:

The collision exampléVith 1 = 300 fixed, A, and K slowly increase
with decreasing gap (cf. Fig. 2, subfigure on top). In contrast to this, the
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Table 1. Parameters and initial values for the two test examples

example ‘ My M, w1 wa Go 9(0)

crossing| 6-10* 1.5-10% 4.095-10"* 4.2.107* 8-1073 190
osc.gap| 6-10* 1.5-10®° 1.13-107%* 4.2-107* 205-107% 7
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Fig. 2. Crossing example. On top: Fake energies/foe 300 constant (dashed line) and
with p-control for TOL = 1075 (solid line) versus time. Below:-values chosen by the
algorithm
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Fig. 3. Oscillating gap example. On the left: Fake energy versus timg fer300 constant
(on top) and for a simulation with-control and tol=2e-5 (fake energy apévalues chosen).
On the right: Increasing errér— 6, for 1« = 300 (on top) and bounded error wigicontrol

fake energy remains bounded below the chosen toleriiide= 1 - 10~°
if the control algorithm of the preceding section is used. Thealue is
slowly decreased in accordance with the closing gap. This requires some
step rejections in order to readjystwhich consumes about 25 percent of
the computational effort. When arriving at the level crossing @000) the
algorithm automatically reports that no appropriatehoice is possible.

The oscillating gap exampl®&Vith 1 = 300 fixed, A, and Ky explode
after some oscillations of the gap, compare Fig. 3. The figure also presents
the performance of the control algorithm with toleraMe®L = 2 - 10-5.
The fake energy remains bounded belB@L and the errof — 6, does not
show any accumulative increase, too.
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The p-value is slowly pushed to a low value which then remains nearly
constant and which fits to the minimal gap size. Only about 8 percent of the
computational effort are used for step rejections.

The results reported have been produced without any additional mini-
mization step. In all cases, including a minimization after each subinterval
causes only minor changes in the performance of the algorithm.
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