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Summary. The Car-Parrinello (CP) approach to ab initio molecular dynam-
ics serves as an approximation to time-dependent Born-Oppenheimer (BO)
calculations. It replaces the explicit minimization of the energy functional
by a fictitious Newtonian dynamics and therefore introduces an artificial
mass parameterµwhich controls the electronic motion. A recent theoretical
investigation shows that the CP-error, i.e., the deviation of the CP–solution
from the BO-solutiondecreaseslike µ1/2 asymptotically. Since the compu-
tational effortincreaseslike µ−1/2, the choice ofµ has to find a compromise
between efficiency and accuracy. The asymptotical result is used in this paper
to construct an easily implemented algorithm which automatically controls
µ: the parameterµ is repeatedly adapted during the simulation by choosing
µ as large as possible while pushing an error measure below a user-given
tolerance. The performance and reliability of the algorithm is illustrated by
a typical example.
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Introduction

The most prominent approach to approximative ab–initio molecular dy-
namic calculations is based on thequantum adiabatic approximation, also
called the time-dependentBorn-Oppenheimerapproximation [1]. Here, one
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exploits the large mass ratio between ions and electrons by describing the
ions classically and the electrons quantally. The equation governing the ionic
movement is obtained by a semiclassical limit [4], i.e., becomes a classical
Newtonian equation of motion. The electronic configuration is given by the
ground state of the corresponding energy functional, i.e., by the state of
minimal energy. Thus, a straightforward numerical simulation of the adia-
batic approach requires the solution of a minimization problem for a highly
dimensional functionalat eachtime step of the simulation. As noted in [7],
even for very small realistic time steps, state-of-the-art minimization algo-
rithms often require an order of ten iterations to converge which prevents
this approach from being feasible for more complicated systems.

In 1985, Car and Parrinello [3] presented their method which largely
extended the set of treatable systems. They replaced the adiabatic motion
of the electrons by anotherfictitious classical Newtonian dynamics which
oscillates around the energy minimum. Therefore, an artificial, but free pa-
rameter — the fictitious “electronic mass”µ — is introduced. In [2], the
present authors in detail discussed the connection of the CP approach with
the quantum adiabatic approximation. In particular, it was shown that, under
a crucial nondegeneracy condition, the deviation between the CP solution
and the quantum adiabatic solution is of orderO(µ1/2).

In an inspiring paper [7], Pastore, Smargiassi, and Buda illustrated thatµ
constitutes a kind of control parameter. In this paper we pick up this idea and
exploit the approximation result from [2] to construct an algorithm which
automaticallycontrols the value ofµ with respect to a predefined accuracy
requirement for the CP solution.

1. Theoretical background

In the quantum adiabatic model the equations of motion are given by

Mq̈BO +
∂U(q)
∂q

∣∣∣∣
q=qBO

= 0,(1)

whereq = (q1, . . . , qn) denotes the ionic positions and the potentialU is
given by minimizing the electronic energy potentialE,

U(q) = min
ψ
E(ψ; q).

The minimum is taken over all orthonormalm-tupleψ = (ψ1, . . . , ψm). The
energy functional is given for instance by the Kohn-Sham scheme [6] in the
context of density functional theory (cf. [2] for details). The correspond-
ing solution will always be denotedqBO and the corresponding electronic
ground state asψBO and, in particular, the initial stateψBO(t = 0) asψ0.
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The fictitious Newtonian dynamics introduced by the alternative CP–
approach is given by the Lagrangian

LCP =
µ

2

m∑
j=1

〈ψ̇j , ψ̇j〉+1
2

∑
I

MI q̇
2
I−E(ψ, q)+

m∑
j,k=1

Λjk (〈ψj , ψk〉 − δjk) ,

where〈·, ·〉 denotes the integral scalar product, the wave functionsψj are
regarded as classical fields,MI are the ionic masses andµ is the named
masslike parameter introduced by the method. The Lagrange parameters
Λjk ensure the orthonormality of the wave functions. The total energy of
the CP–method contains an “unphysical” part, the so called “fake” kinetic
energy

Kf =
m∑
j=1

µ

2
〈ψ̇j , ψ̇j〉.

The second order equations of motion belonging toLCP are

Mq̈µ +
∂E(ψµ; q)

∂q

∣∣∣∣
q=qµ

= 0,

µψ̈µj +
δE(ψ; qµ)
δψ∗

∣∣∣∣
ψ=ψµ

=
m∑
k=1

Λjkψ
µ
k , j = 1, . . . ,m,

〈ψµj , ψµk 〉 = δjk, j, k = 1, . . . ,m

whereδ/δψ∗ denotes the functional derivative ofE with respect to the state
ψ and the superscript the explicit dependence on the “control parameter”µ.

The accuracy of the Car-Parrinello solution(qµ, ψµ) for givenµ in com-
parison with the quantum adiabatic model(qBO, ψBO) is given by:

∆µ = |qµ(t) − qBO(t)| + ‖ψµ(t) − ψBO(t)‖,
with appropriate norms| · | and‖ · ‖.

Let T∗ be the maximal time for which the ground state ofE(ψ, qBO) is
still nondegenerate. BeforeT∗ is reached, the quantitative influence ofµ on
the accuracy is described by the followingconvergence resultwhich holds
under the condition that the evolution starts in the initial ground state with
vanishing velocity, i.e.,ψµ(0) = ψ0 andψ̇µ(0) = 0:

For every timeT with 0 < T ≤ T∗, there is aµ∗ > 0 and a constant
C > 0 so that

∆µ ≤ Cµ1/2 0 ≤ t ≤ T

and the fake kinetic energy satisfies

Kµ
f =

µ

2
|ψ̇µ(t)|2 ≤ Cµ 0 ≤ t ≤ T(2)
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for all values of the parameterµ satisfying0 < µ ≤ µ∗.
For the case of the Kohn–Sham functionalE = EKS , a rigorous math-

ematical proof of this assertion is given in the work [2] of the authors.
The reader should note, that the convergence results are only valid for

timesT < T∗, i.e., before the first degeneracy of the electronic ground state
may occur. AfterT∗ the stateψµ can largely deviate from the ground state
for all choices ofµ > 0. Then, the validity of the Car–Parrinello approach
and the quantum adiabatic approach itself are at least questionable [2,7].

2. The automatic control scheme

In some cases, CP–simulations with fixedµ develop large deviations from
the BO–dynamics even if initiallyµ is small enough: The fake energyKµ

f
and with it the error∆µ accumulatively increase after some time, an effect
which may lead to an explosion ofKµ

f and, thus, may destroy any reliable
information. Obviously, this can happen if the ground state gets degenerate.
But it can also be observed if the energy gap between the ground state
and the first excited state of the electronic configuration gets too small in
the course of the evolution of the system (cf. [7] and the next section, in
particular Fig. 3). Here, “too small” means “too small in comparison with
theµ–value chosen”, because, according to the theoretical statement from
above, we can avoid the error increase and boundKµ

f and∆µ by choosing
µ small enough. In this section aµ–controlling algorithm will be explained
which is designed to avoid model instabilities away from true ground state
degeneracies.

The algorithm is based on the following idea: Compute an appropri-
ate choiceµ by limiting the maximal value of the fake energyKf in the
simulation intervalI = [t0, t1], i.e., chooseµ so that

Kµ
f (I) = max

t∈I
1
2
µ|ψ̇(t)|2 ≤ TOL,(3)

where the toleranceTOL is predefined by the user. The fake energy can
easily be computed during the simulation and can be used as a monitor for
the error∆µ. The construction of the scheme similar to that designed for
controlling the stepsize in the numerical integration of ordinary differential
equations (cf. [5]).

Let the initial electronic state for a CP–simulation on the time intervalI
be the initial ground state and let its velocity be zero. Moreover, we assume
for a moment that we still have computedKµ0

f (I) for a µ0 < µ∗ with µ∗
from the statement above. Then, according to (2),

µ =
TOL
Kµ0
f (I)

µ0(4)
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will be near the optimal choice for realizing (3) onI. Now, let the total time
interval of interest,Itot, be decomposed in several subintervalsI1, . . . , IN
without overlap. The algorithm works successively on all subintervalsIj by
exploiting (4) in two different situations:

1. Step rejection:If a CP–simulation onIj usingµ0 produces the result
Kµ0
f (Ij) > TOL, we have to reject this attempt. Then, a newµ–proposal is

computed using (4) and the simulation onIj is repeated. The results of the
previous simulation are neglected.

2. µ-choice for the next step:Assume that the simulation onIj using
µj has been successful, i.e.,K

µj

f (Ij) ≤ TOL. Via (4), we could compute
anotherµ–proposalµ∗ which then is expected to be optimal onIj . Instead
of repeating the successful calculation onIj , we switch to the next step,
hope that the situation does not change too much, and useµ∗ as the initial
µ–value for the simulation onIj+1. Because (4) leads toµ∗ ≥ µj and a large
increase inµ may be dangerous, this increase is limited, i.e., (4) is replaced
by, e.g.,

µ = min

(
2,

TOL
K
µj

f (Ij)

)
· µj .

With respect to reliability it is advisable to add an explicit minimiza-
tion of E(ψ, q) after each subintervalIj = [tj , tj + ∆T ]. Theoretically
this is necessary, because the construction of the algorithm depends on the
assumption that the initial electronic state for the simulation onIj+1 is the
momentary ground state. But if the toleranceTOL is small enough, the de-
viation of the final stateψ(tj +∆T ) at the end of the simulation onIj from
the corresponding ground state is also small and the minimization may be
omitted.

After each subinterval the accumulated fake energy is skipped by starting
at the next subinterval with the velocitẏψ = 0. This leads to a small loss of
total energy, which is of no importance as long asTOL is small enough and
there are not too many subintervals. If this is not the case, the skipped fake
energy can be added to the kinetic energy of the ions by slightly increasing
their momenta.

3. Illustrative examples

In [7], a simple linear two-level model is constucted whichcum grano salis
contains all important features of the Car-Parrinello method. In this model,
ψ is a simple two-dimensional one-electron state, i.e., it ism = 1, and the
electronic energy functional is quadratic:

E(ψ, q) = 〈A(q)ψ,ψ〉,
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Fig. 1. Time-dependence of the gap∆λ in the two test cases. Left: Decreasing gap with a
level crossing neart=4000. Right: Oscillating gap with minimal gap size near0

with a 2 × 2-matrixA. The time-dependence of the two eigenvaluesλ0 =
λ0(q) andλ1 = λ1(q) of A along the solutionq = q(t) is essential for
the evolution: As long asλ0 < λ1 the ground stateψ0(q) of E(ψ, q) is
nondegenerate. Thus, quantum adiabatic and CP-simulations do only make
sense as long as theenergy gap∆λ = λ1 − λ0 remainspositive.

In this simple case the Car-Parrinello equations of motion can explicitly
be transformed into a system without constraints (cf. [7] p. 6344 and be
aware of some typos):

µθ̈ = −G0 g sin(θ − θ0)
M0θ̈0 = G0 g sin(θ − θ0) − ω2

2M0θ0

Mg g̈ = G0 cos(θ − θ0) − ω2
1MgG

2
0 (g − 1),

where the angleθ represents the stateψ viaψ = (cos θ/2, sin θ/2)T, andg
andθ0 mimic the ionic motions. Whileg directly gives us the gap via

∆λ(t) =
g(t)
g(0)

∆λ(0),

the angleθ0 represents the ground stateψ0 = (cos θ0/2, sin θ0/2)T of E.
Thus, the differenceθ − θ0 measures the deviation ofψ from the ground
stateψ0.

As a rule of thumb one can state that, if the error∆µ should remain small,
the parameterµ must decrease with the minimal gap size. For studying the
effects of a changing gap, we consider two illustrative examples: one with a
slowly decreasing gap leading to a level crossing (“crossing example”), and
another with a periodically closing, but always positive gap (“oscillating
gap example”), cf. Fig. 1. The parameters of these cases are given in Table
1. In both examples all initial velocities are zero andθ(0) = θ0(0) = 1.
All magnitudes are given in atomic units (cf. [7]). For both examples have
also been consider in [7] for a constantµ = 300. Therein, it has been
observed that∆µ and the corresponding fake energy strongly increase in
both examples. This problem is automatically avoided by using the proposed
control algorithm:

The collision example.With µ = 300 fixed,∆µ andKf slowly increase
with decreasing gap (cf. Fig. 2, subfigure on top). In contrast to this, the
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Table 1. Parameters and initial values for the two test examples

example M0 Mg ω1 ω2 G0 g(0)

crossing 6 · 104 1.5 · 108 4.095 · 10−4 4.2 · 10−4 8 · 10−3 190
osc. gap 6 · 104 1.5 · 108 1.13 · 10−3 4.2 · 10−4 2.05 · 10−3 7

Fig. 2. Crossing example. On top: Fake energies forµ = 300 constant (dashed line) and
with µ-control forTOL = 10−5 (solid line) versus time. Below:µ-values chosen by the
algorithm
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Fig. 3. Oscillating gap example. On the left: Fake energy versus time forµ = 300 constant
(on top) and for a simulation withµ-control and tol=2e-5 (fake energy andµ-values chosen).
On the right: Increasing errorθ − θ0 for µ = 300 (on top) and bounded error withµ-control

fake energy remains bounded below the chosen toleranceTOL = 1 · 10−5

if the control algorithm of the preceding section is used. Theµ-value is
slowly decreased in accordance with the closing gap. This requires some
step rejections in order to readjustµ, which consumes about 25 percent of
the computational effort. When arriving at the level crossing (t ≈ 4000) the
algorithm automatically reports that no appropriateµ-choice is possible.

The oscillating gap example.With µ = 300 fixed,∆µ andKf explode
after some oscillations of the gap, compare Fig. 3. The figure also presents
the performance of the control algorithm with toleranceTOL = 2 · 10−5.
The fake energy remains bounded belowTOL and the errorθ− θ0 does not
show any accumulative increase, too.
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Theµ-value is slowly pushed to a low value which then remains nearly
constant and which fits to the minimal gap size. Only about 8 percent of the
computational effort are used for step rejections.

The results reported have been produced without any additional mini-
mization step. In all cases, including a minimization after each subinterval
causes only minor changes in the performance of the algorithm.
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