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ABSTRACT 

A new adaptive multilevel approach, for linear parabolic partial dif
ferential equations is presented, which is able to handle complicated 
space geometries, discontinuous coefficients, inconsistent initial data. 
Discretization in time first (Rothe's method) with order and stepsize 
control is perturbed by an adaptive finite element discretization of 
the elliptic subproblems, whose errors are controlled independently. 
Thus the high standards of solving adaptively ordinary differential 
equations and elliptic boundary value problems are combined. A the
ory of time discretization in Hilbert space is developed which yields 
to an optimal variable order method based on a multiplicative error 
correction. The problem of an efficient solution of the singularly per
turbed elliptic subproblems and the problem of error estimation for 
them can be uniquely solved within the framework of precondition
ing. A multilevel nodal basis preconditioner is derived, which allows 
the use of highly nonuniform tri angulations. Implementation issues 
are discussed in detail. Numerous numerical examples in one and two 
space dimensions clearly show the significant perspectives opened by 
the new algorithmic approach. Finally an application of the method is 
given in the area of hyperthermia, a recent clinical method for cancer 
therapy. 



Für Bg 

"Ein guter Engel wird immer nötig sein, was immer du tust." 

L. Wittgenstein, 
Bemerkungen über die Grundlagen der Mathematik, VII.16, 

Suhrkamp, Frankfurt a. M., 1984 
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INTRODUCTION 

In the presence of complicated space geometries, discontinuous coefficients, 
inconsistent initial data etc., the numerical solution of parabolic problems 
in two space dimensions requires a sophisticated reduction of the computa
tional amount of work. This reduction will be even more important in three 
space dimensions, for which it would be the only hope to break through the 
complexity barrier of many important problems of the natural sciences and 
technology. A nowadays increasingly important concept of such an amount 
of work reduction is adaptivity, i.e., the automatic choice of the degrees of 
freedom, such as the automatic distribution of nodes in a triangulation or the 
local order of a discretization. If we compute a family of approximations to 
an infinite dimensional problem with different local discretization parameters 
or orders instead of a single approximation, we speak of multilevel methods. 
Such a computation of simultaneous approximations allows to construct ef
fective error estimates, which support the adaptation control. Moreover the 
construction of fast iterative solvers for arising linear systems of very high 
dimension becomes possible by multilevel techniques, 

In the field of ordinary differential equations a high standard of adaptive 
multilevel algorithms has been reached by the state-of-the-art solvers with 
order and stepsize control, e.g., extrapolation methods, cf. [24]. For sta
tionary scalar elliptic boundary value problems a similar standard has been 
obtained in 2D by the adaptive finite element methods with a multilevel 
(multigrid) iterative solution process, cf. the work of BANK, YSERENTANT, 
DEUFLHARD and their collaborators [5, 6, 7, 8, 9, 10, 11, 12, 25, 33]. In the 
opinion of the author this thesis will present an approach of a comparable 
standard for linear scalar selfadjoint parabolic problems in ID and 2D. The 
restriction to parabolic problems is understood as a first step towards more 
general time dependent partial differential equations. 

A widespread method for the adaptive solution of parabolic problems is the 
method of lines. Since there is in general no space mesh, which is a good and 
efficient one for all time layers, the space mesh has to be updated (regridded) 
appropriately from time to time. A rather advanced approach of statical 
regridding is due to BIETERMAN/BABUSKA [13, 14, 15]: At fixed time-points 
an error estimate for the whole parabolic problem decides where to regrid. 
However, this error estimator is given for the ID case only and an automatic 
choice of the regridding times is missing. The moving finite element variant of 
the method of lines due to MILLER/MILLER [36, 37] (dynamical regridding) 
is restricted to a fixed number of grid points and moreover to the ID case 
for geometrical reasons; for the 2D case inherent difficulties and drawbacks 
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occur, cf. [57], which make this approach likely to be not feasible in three 
space dimensions. Still quite common is the use of space-time elements, cf. 
the work of FLAHERTY, JOHNSON and their collaborators [2, 22, 27, 35], 
which increase the geometrical complexity by one dimension. 

However, in this thesis we favor an approach which strictly separates time 
and space — time is not just another dimension of space. This fact is backed 
by the semigroup solution of parabolic equations, which leads to the approach 
we suggested for the first time in [16]: 

• The parabolic initial boundary value problem can be considered as an 
abstract Cauchy problem in an appropriate function space. 

• A variable-step variable-order discretization in time applied in that 
function space gives rise to an approximation of the known standard 
for ordinary differential equations. 

• Discretization of the elliptic subproblems is considered as a perturba
tion, which can be controlled independently of the time discretization. 

This approach separates time and space in exactly the same way as semi
group theory does and glues them together just as semigroup theory does — 
thus making a combination of the standards from ordinary differential equa
tions and elliptic boundary values problems possible and, equally important, 
natural. Time and space discretization have — besides their perturbation 
character — no influence on each other. 

In his former work [16], the author suggested an extrapolated implicit Euler 
scheme for the construction of the variable-step variable-order method in 
function space, which turned out to be a good choice for a ID implementation 
only. 

This thesis now exploits the full advantage of our approach in the 2D case 
by the construction of a variable order discretization in time with an optimal 
amount of work. Moreover, the restriction to the 2D case is mainly due to 
reasons of programming and data structures, it nowhere seriously enters into 
the developed theory which easily extends — if not already independent of 
the space dimension — to the 3D case. 

In order to apply the proposed approach to actual 2D problems, it was 
necessary to construct an adaptive finite element solver for the arising singu
larly perturbed elliptic problems. The singular perturbation results from the 
time step of the discretization in time; standard solvers run into difficulties 
for small time steps, which occur in transient phases. Two devices had to be 
re-constructed: 
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• Error estimator 

• Linear solver 

Both devices have to behave well — uniform in the time step. Using a mul
tilevel iteration as linear solver rises the question of a proper preconditioner. 
As it turns out this preconditioner is the key to the error estimator as well. 

Because of its use of orthogonal projections a recently presented precondi
tioner for elliptic equations due to B R A M B L E / P A S C I A K / X U [19] — extended 
to the case of highly nonuniform meshes by YSERENTANT [56] — is ideally 
suited as conceptual base for our purposes. Moreover this concept is not re
stricted to certain space dimensions, like hierarchical basis preconditioners, 
but is easily extended to higher dimensions. For this type of preconditioner 
the question of an effective implementation in the presence of highly nonuni
form meshes had to be studied for the first time. We developed a kind of 
algebraic description of triangulations and nodal bases functions which per
mits to handle and prove implementation details easily. 

Numerous numerical experiments on model problems have proved the algo
rithm to be very robust, reliable and efficient in ID and 2D. However, model 
problems tend to isolate the different kind of difficulties or to test for difficul
ties other than those arising in real applications. In order to prove (mainly in 
view of possible future extensions) the applicability of our approach to real 
life problems we did some computations on the Bio-Heat-Transfer equation. 
This equation plays a prominent role in planning hyperthermia, a recent clin
ical method for the treatment of malignancies (cancer), which at this time 
is in an experimental status. The numerical solution of this equation shows 
the following typical difficulties in combination: 

• nasty complicated problem geometry: re-entrant boundary corners, a 
lot of different inner regions, many nodal points in the initial coarse 
triangulation, etc. 

• discontinuous coefficients due to different regions 

• inconsistent initial data. 

Surely a fast and reliable solution on a workstation is important for an exper
imental planning phase which studies the involved model parameters. Need
less to say, that in an actual clinical treatment with on line control com
putation, a fast and reliable solution, which permits to react in reasonable 
time, would be of vital interest. In computations starting from 2D computer 
tomography cross sections we have obtained — within clinical tolerances — 
a fast solution, which gives enough time to react interactively. 
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Outline of the paper 

The paper is divided into three major parts: Time, Space and Results. 

The Time Part. In this part we review in Sections 1 and 3 our approach 
as introduced in [16, 17]. In Section 2 we present our new optimal variable 
order time discretization, which is based on a multiplicative error correction. 

This first part is based on material already published by the author, [17, 
18]; however some changes should be indicated: 

• Theorem 1.2, which is [18, Theorem 1.4], has been given a shorter 
proof, which is now independent of the more general theoretical setting 
of [17]. 

• Section 2.1 is an extension of [18, Section 2.1] and has been totally 
rewritten. It consists now of a comprehensive account on the discretiza
tions based on the multiplicative error correction. Lemma 2.1 on the 
Laguerre polynomials, which we only conjectured in [18], is completely 
proven now. 

Tiie Space Part. This part contains entirely new material and is devoted 
to the solution of the singularly perturbed elliptic subproblems in 2D. 

Section 4 introduces the notation and the formalism to handle highly 
nonuniform triangulations and finite element spaces. Also a first discussion 
of preconditioning and corresponding iterative solution may be found. 

Section 5 discusses on a rather abstract level error estimation for general 
Galerkin methods and explains why preconditioning is the key to an effective 
error estimation. 

Section 6 is devoted to the construction of a preconditioner on the base 
of the elliptic preconditioner of BRAMBLE/PASCIAK/Xu [19]. We first deal 
with the case of an elliptic operator with no Helmholtz term and natural 
boundary conditions outside the Dirichlet boundary piece. The thus devel
oped preconditioner, which gives a smooth transient from diagonal precon
ditioning of the mass matrix to a preconditioner of the stiffness matrix, is 
thereafter extended to the presence of a Helmholtz term and general Cauchy 
boundary conditions. For the need of error estimation we present the pre
conditioning of quadratic elements. This leads us to the discussion of the 
error estimation, where the abstract considerations of Section 5 will find 
their counterpart. We close the section by a detailed and careful derivation 
of the actual implementation of our preconditioner. This implementation fol
lows naturally from the mathematical description of the preconditioner with 
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the help of the formalism which describes triangulations and finite element 
spaces. We obtain a result, which states that the complexity of a precondi-
tioner multiplication is the same as the multiplication with a sparse matrix 
of constant bandwidth. 

The Result Part. First in Section 7 some algorithmic details for the ID 
and 2D case are given. They include such important issues as the optimal 
choice of certain parameters, the discussion of possible orders for the time 
discretization in dependence of the imposed accuracy, a stop criterion for the 
time error iteration, a stabilization of orthogonal projections and the direct 
solver on the coarsest triangulation in 2D. The latter becomes important 
when the starting grid already consists of "many" nodes. 

Section 8 contains numerical computations on model problems in ID and 
2D. The ID examples have already been published in [18]. These model 
problem computations show a lot of carefully chosen details, which back the 
developed theory. 

Section 9 finally gives a real life application of our method in the can
cer therapy method hyperthermia. This shows the full applicability of our 
method to the given problem class. 
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I. MULTILEVEL DISCRETIZATION IN TIME 

1. PRELIMINARY DRAFT OF THE ALGORITHM 

1.1. T H E PROBLEM 

We are concerned with linear scalar selfadjoint parabolic initial-boundary 
value problems: 

Given a domain H C \R with Lipschitz boundary du = TpCTc , a time 
Tfin > 0, solve 

i) 4>())—TT \- A{x,d)u(t)x{ = i(t,x)) s et t,, t EJt^Tfinj; 

(1.1)") u(t>')\rD=9(t>-), ^ l O . T j ; 

iii) C(x,d)u(t)x)|x€r = £{t,x)\xer , tG]0, TfjJ; 

iv) u(0,-) = u0. 

Here A(x,d) denotes a formally selfadjoint elliptic operator of second order, 
which has a principal part in divergence form: 

d 

A(x, d)u(x) = - y~] dk {aik(x)diu(x)) -f ?(^)w(x), 
t',A;=i 

where at-fc = â ,-. Moreover C(x, <9) denotes the corresponding Cauchy bound
ary operator 

d 

C(x,d)u(x) = - 5_^ nk{xaaik(x)^iu{x) - ({xxu(x), 
t,k=i 

where n = ( n i , . . . , n^)T is the outer unit normal on dfl. 

NOTATION. The norms of the Sobolev spaces H*(Q,) will be denoted by 
|| • ||s, their seminorms by | • |s, the norms of the spaces WS'P(Q,) by || • ||4iP 

and the inner product of L2(£l) will be denoted by (•,•). For a function 
V> e L°°(Q) = W0,oo(Q,) wiih if) > 0 a.e. we abbreviate 

ymax == ||y||0,oo a n d <nvin = l / | | l /^l jo.oo. 

We make the following assumptions: 

1. H has Lipschitz boundary, i.e., Q € C0 '1. Furthermore T& is a closed 
subset of d£l. 
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2. 0,gcf,at-fc. G L°°(ft). 

3. <I£,<?, C > 0 a-e-i moreover 0min > 0. 

4. A(xd)) is strongly elliptic, such that there are constants 0 < 6 < A 

»=i *,jb=i t = i 

for all £ E IR and almost all a; € fi. 

5. /(*»*)> uo € JC (fi) for all t G [OjTfi^. 

6. ^,e e. c1 ([[j0fin],^^idQ)). 

By means of assumption 6 and the known properties of the trace operator, 
we can take by a simple transformation the case that 

For ease of representation we will assume mostly in this paper 

• the temporally homogeneous case ft = 0 

• <f/ = 1. 

Importan.. The extension to the case ft^0 will be discussed in Section 
2.2.3 and the extension to the case <j> =£ = £1 Section 9.2.2. 

We introduce the space of weak solutions 

HD(Q) ) <,u e Hl(Q) \ u\rD = 0>, 

(the restriction is understood in the sense of traces), which is — due to 
assumption 1 — a closed subspace of /^ ( f i ) , cf. [21, VII§2.2.1], and therefore 
a Hilbert space. We now consider the following continuous symmetric bilinear 
form o(-, •) on H})(Q,) X H})(Q): 

a(u,u) = Y / aikdiudkV dx + I quv dx + I (uv der, 

u , v 6 H})(Q,). Thus, both the operator A(x,d) and the boundary conditions 
are incorporated in this form. For the following the property of HD(£l)— 
ellipticity of the form a(-,-) will be important: There is a constant c\ > 0 
such that 

a(u,u) > Cj||w||l for all u e Hpfä). 

The next Lemma will give some conditions for the #p(n)-ellipticity of the 
form a(-, •). 



LEMMA 1.1. Each of the following cases guarantees the Hp^ty-elllpticity 
of the form a(-, •): 

i) The Cauchy boundary piece is empty, Tc = 0. In this case we estimate 
foru £ HD(Q) 

a(u,u) > S \\u\\l 

and 

a(u. u) > -rt"||w||J. 

Here d^ denotes the band width of a strip containing Q,. 

ü) Qmin > 0. In this case we estimate for u £ H})(Cl) 

a(u,u) >mm(^f ^min)!!«!^ 

and 

a(u,u) > 9nün||w |lo' 

Hi) mes(Tr)) > 0. 

iv) mes(Tc) > 0 and ("min > 0. 

Proof. By assumption 4 we can estimate 

( ) a(U) U) > ^l^li 4" ^rmin||w||o 4" Cmin / u do~. 

i) If Tc — 0 we have that H})(Ct) = HQ(Q,). Hence the assertion follows 
from (*) and from the HQ(Q) Poincare inequality 

Nlo ^ "jfHi f o ru £ Ho(fy, 

cf. [21, IV§7, Prop. 1]. 
ii) Follows trivially from (*). 
iii) [21, IV§7, Remark 4] states the equivalence of | • |i and || • ||i on H})(Cl) 

for mes(r£>) > 0. Thus (*) proves the assertion. 
iv) [48, Theorem 28.5] states, that if mes(Tc) > 0 the norms || • ||i and || | •|| 

which is defined on üTjr^fi) by 

||u||2 = \u\? + / u'dcr, 

u G HQ(Q,), are equivalent. Again the assertion follows from (*). • 

The next Theorem mainly serve the purpose to provide a concept of solu
tion of the parabolic problem, which justifies our approach without additional 
regularity assumptions. 
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THEOREM 1.1. Suppose that the bilinear form a(-,-) is H\,{Vt)-elliptic, 
then the following holds: 

a) There is exactly one positive selfadjoint operator 

A : DA C L [ll) —* L [it) 

satisfying 

i) D^ C #!>(ft), 

ii) a(u, i;) = (Au,i>) for all u 6 -D>i, V G H}(Q,). 

Furthermore we have: 

b) T/ie domain of definition DA is dense in Hp(Q) with respect to the 
Hubert space topology of H^ijl). 

c) For every f £ L2{fX) the solution u £ Hp(Sl) of the variational problem 

a(u,v) = (/, v) for all v € H^ü) 

exists and satisfies in addition: 

u £ DA, AU = /. 

d) The square root A^ of A exists with DAift = HD(&) and satisfies 

a(u,v) = (A^UJA^V) for all u,v € Hp(Q). 

Proof. The assertions a) Sz b) are essentially the Friedrichs representation 
theorem of semibounded symmetric bilinear forms in Hilbert space, consult 
e.g., KATO [32, pp. 322f.]. The solution u £ H})(ti) of the variational 
problem exists by the Lax-Milgram Lemma and the rest of assertion c) holds 
again by the Friedrichs representation theorem. For assertion d) consult e.g., 
K A T O [32, pp. 331f.]. • 

REMARK 1.1. L e t / £ L2(Q,). By means of the above theorem we observe 
that the weak solution u of the elliptic boundary-value problem 

i) A(xdd)u(x) = f(x), i G ft, 

(1.2) ii) u\rD = 0, 

iii) C(x, d)u(x)\xerc = 0, 

*Y,- 'jwwiira»)«r'«vr*^^* a l !^'*^-^ •-.'"*'*-" *™*M'~^'^'«vw*i^t-r^^»v>»;_-i»5i»^i,.-.-;3ii,-"-i^,W'-'-; 
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exists and is given as 

u = A" f eDA C HD(£ly. 

Therefore we call A the weak representation of the differential operator A(x, d) 
imposed with the boundary conditions. 

Since the weak representation operator A is positive selfadjoint the frac
tional powers Aa, a > 0, exist and the corresponding domains of definition 

H a = JD^Q 

equipped with the inner product 

{u,v)ft2a = (Aau,Aav) for all u,v G H2a, 

define a scale of Hilbert spaces for which the embeddings 

Ha «-»• i j ^ , a> /?, 

are continuous. Hence Theorem 1.1 states that 

DA = H °—» i j 1 = JD^I/2 = HD(£1). 

In some sense the space J?2 fully describes the regularity of weak solutions of 
the problem (1.2) since 

\\u\\fr = ll/llo-
The term of üT1+5(n)-regularity, s > 0, may now be expressed as the exis
tence of a continuous embedding 

H2 *-• H1+S(ti)n Hj)(Q). 

EXAMPLE 1.1. By making the weak assumption 

ang € C0,t(Q) for some 0 < t < 1, 

we gain the following regularity result due to NECAS [38] for the case Tc = 0: 

H2 «-» H1+S()l) n H%(Q,) for all 0 < s < min(t, i ) . 

Imposing in addition 
Q, is convex, t — 1, 

yields full regularity 
H2 <-+ H22ti) fl iJo(n), 

a result due to KADLEC [31]. 
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With the help of the weak representation operator A we may restate our 
parabolic problem (1.1) as the following abstract Cauchy problem in L2{Vt): 

11) U{U) = U0. 

If we denote the holomorphic semigroup [29, 42] of contractions generated by 
the negative selfadjoint operator (—A) as 

U(t) = exp(—tA), 

the solution u € C^(]0,Tfin],iir2) of (1.3) is given by 

i) u(t) — [w —U{t)w\ +U(t)uo, where 

ii) w = A - 1 / G # 2 . 

Exactly i/iis solution will be approximated by our algorithm. 

1.2. SEMIDISCRETIZATION IN TIME 

As mentioned in the introduction and discussed in [17], the initial-value 
character of the abstract Cauchy problem requires the discretization in time 
first, which is often called Rothe's method in the literature, cf. [30, 39, 46]. 
The principle of a variable-step, variable-order discretization in time will be 
explained first assuming that the spatial elliptic subproblems can be solved 
exactly. 

We consider linear single step methods of the form 

uj+i = $ ( U J , T ) , j = 0 , 1 , . . . . 

Applied to the scalar differential equation 

y = — ZV 

they give rise to rational approximations r$(z) = $(1,1) to exp(—z). The 
rational approximation r$ is said to be of order p > 1 whenever 

r$(z) = e-z + 0(zp+ ) for z —> 0, 

and to be of exact order p > 1 if r$ is of order p but not of order p -f 1. 
In order to be able to apply the single step method to the abstract Cauchy 

problem (1.3) we have to make demands on the stability. The approximation 
r$ is said to be 
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• strongly A0-sabble if 

|r$(^)| < 1 for z > 0, and |r$(oo)| < 1; 

• strongly A$-stable, 0 < $ < TT/2, if 

F^l-zJ! S -I- i°r z £ 2 ^ , and |r$(oo)| < 1; 

• Lö-stable, 0 < $ < TT/2, if it is strongly ./^-stable with 

r$(oo) = 0. 

Here E5 denotes 
E,j = {* € C | |arg2r| < &}. 

Note the implications: Z^-stable => strongly A^-stable =>• strongly Ao-stable 
for 0 < $ < #. 

For proving the applicability of a corresponding single step method to the 
abstract Cauchy problem (1.3) we need the following special case of a lemma 
due to LUBICH [34, Lemma 6.3], whose proof may be found in [17, Lemma 
2.4] as well. It is stated there for A#-stable approximations with $ > 0 only, 
but is valid with the same proof for strongly A0-stable approximations. 

LEMMA 1.2. (LUBICH [34]). Letrz)) be a strongly Ao-stable approximation 
of order p to exp(—z). There is anr\ > 0 such that for 0 < z < 77 the following 
asymptotic expansion holds 

r\zn =e [l-{-rp{nz)zy-{-...-{-PN[nz)z + RN+I^T^J. 

Here the Pj are polynomials of degree j —p-\-l, Pj(0) = 0 and the remainder 
satisfies 

\RN+i(ri)Z)\ < Ce nzl 
z 

The applicability to the abstract Cauchy problem can now be stated. 

THEOREM 1.2. Given a strongly Ao-stable rational approximation r(z) 
to exp(— z) of order p, the single step method 

(1.4) $r(u, r) = r(rÄ)u + (/ - r(rA) ) A" f 

is well defined for r > 0 and the sequence un+\ = $ ( u n , r ) , n = 1,2,..., 
approximates the solution of the abstract Cauchy problem (1.3) at tn = nr 
with an error of 

( ~\ E\\ \\n, 1l(-f- |\\r. <? (^ >rP-fItaJX\'-10e~'P\ \\ti„ II . 
V i . < J ; ||«n u\ln)\\Q ^ ^T ln ||"0||i/2a-
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