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Summary

A new adaptive approach for one-dimensional scalar conservation laws with convex
flux is proposed. The initial data are approximated on an adaptive grid by a problem
dependent, monotone interpolation procedure in such a way, that the multivalued problem
of characteristic transport can be easily and explicitly solved. The unique entropy solution
is chosen by means of a selection criterion due to HOPF and LAX. For arbitrary times,
the solution is represented by an adaptive monotone spline interpolation. The spatial
approximation is controlled by local L'-error estimates. As a distinctive feature of the
approach, there is no discretization in time in the traditional sense. The method is
monotone on fixed grids. Numerical examples are included, to demonstrate the predicted
behavior.
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Introduction

The construction of an adaptive algorithm for time-dependent hyperbolic conservation
laws has to face a well known problem: Explicit direct discretization in time will yield
a CFL-testriction of the time step, which will be prohibitively small when shocks are
resolved by an adaptive space mesh. On the other hand, an implicit direct discretization
in time introduces much numerical viscosity, since the velocity of information transport
is modeled the wrong way. Thus, the time derivative should not be discretized directly at
all.

Instead, one should try to attack the evolution operator of the problem, & : X — X,
which maps admissible initial data to the solution at time ¢. An abstract framework of
promising methods is given by the so called PERU-schemes of K.W. MORTON {11], which
we state in a slightly more general way: Replace the evolution operator & by the sequence

& = PER,
X 2o x &y x Py x

Here, R is a (re)construction operator, which maps the initial data in a more desirable
space X C X. The operator P (re)presents the result of the transport on X as a more
appropriate element of the space X. Moreover, the exact transport & on the space X

might be replaced by some simplification &,.
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An example of this rather general approach is provided by Godunov’s method and its
generalizations. Here, X = L' and X C X consists of the piecewise constant functions on
some mesh A. The reconstruction and representation operator are just the cell average
projection onto X, R = P. We have to consider three cases, depending on the Courant
number C' = C(t,A):

e C < 1/2. The evaluation of & on X is just the solution of non-interacting
Riemann problems (classical Godunov scheme).

e C < 1. Here one can use the weak formulation of conservation laws in order to
evaluate at least the product P&, on X by means of Riemann solvers.

e (' > 1. There are simplifications & of the exact evolution operator, which ap-
proximate the now interacting Riemann problems and which are TVD. LEVEQUE
[9] handles the interactions linearly in the large time-step Godunov’s method.
BRENIER (2] uses the transport-collapse operator, which is a certain averaging
operator of the multivalued solution of characteristic transport. Both introduce
errors in time.

The question which will be addressed is, whether there are any spaces X which are
more powerful than piecewise constants in terms of approximation properties and which
allow (at least for the most simple problems) the computation of the exact evolution
operator & for arbitrary times ¢.

The answer given in this article 1s as follows: X can be chosen as the range of a
certain interpolation operator R, which depends on the right hand side of the problem.
The space X will be as powerful for approximation as piecewise linears. The interpolation
operator R is constructed in a way, that the computation of the multivalued solution of
characteristic transport of initial data from X is extremely simple. Rather than averaging
the multivalued solution like BRENIER [2] with the transport-collapse operator, we select
the single valued entropy solution by means of the Lax-Hopf formula (6, 7]. The final
representation of the solution is given by some interpolation operator P, which could be
any monotone spline interpolation. The space meshes will be constructed by an adaptive
interpolation procedure, which is guided by local L'-error estimates.

Up to now, the presented algorithm strongly relies on convexity properties of the
underlying problem, so that the problem class which can be immediately handled seems
to be quite restricted. However, there are strong indications that our approach will be at
least applicable to the class of those systems of conservation laws, which are equivalent
to Hamilton-Jacobi equations with convex Hamiltonian.

Theoretical Preparations

We are concerned with the solution of scalar conservation laws
us + flu): =0, u(-,0) = uo, (1)

where u(-,t) is a function on R. Our general assumptions on the flux f will be
e f:R — R strictly convex and C".
Thus, the derivative a« = f' : R —]a_, @[ is one-one, onto and nondecreasing. The
inverse of « will be denoted by 3 = o™ : Ja_, ax[— R.
A crucial role will be played by the Legendre-Fenchel dual f* : Ja_,ay[— R of f,
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defined as
[(z) = sup(vz— f(v))
= uva(u) ~ f(u)  with u = B(z).
Convex analysis (e.g., TIKHOMIROV [14]) states that
(/) = 8.

Our whole approach heavily relies on the following characterization of that weak
solution, which satisfies the entropy condition.

THEOREM 1. (LAX [7]). Let up € L'(R) and Up(y) = [¥_ uo(€)dé. Forz € R, ¢t > 0
define

Eunfz) = 6 (T2,

where y = y(z,t) €le—ta_,z—tay[ is any value which minimizes

Usly) + L1 (I - y) = min! . (2)

Then Eup € L'(R) is the unique entropy solution at time t of the conservation law under
consideration.

If there exist several different values y, which minimize (2) for a given z, then z is
the position of a shock discontinuity. The limits Eug(x—0), Euo(z+0) exist, and

Eo(z—0) > 3 ("””t;y) > Eg(z+0)

holds for every such y.

Remark. Foru € L®(R),u_ < up < u, a.e., the solution only depends on f restricted
to the interval [u_,u,].

Remark. This Theorem has quite some history. HOPF [6] stated it for the inviscid
Burgers equation u; + uu, = 0. He obtained the result in the limit # — 0 of his explicit
solution (i.e., the Cole-Hopf transformation to the heat equation) of the viscid Burgers
equation u; + uuy = pug;. Later LAX [7] generalized the result to arbitrary convex
fluxes f. A nice interpretation as Bellman’s approach to the Hamilton—Jacobi equation
v+ f(vs) = 0 can be found in LAX [8] or CONWAY and HOPF [3]. In fact, Uz,t) =
JZoo u(€, t)d€ satisfies the Hamilton-Jacobi equation and

U(z,t) = myin (Uo(y) +if” (z_;;g)) 5

if f is adjusted to f(0) = 0. This formula is actually connected with the modern notion of
viscosity solutions of more general Hamilton—Jacobi equations, we refer to the book of P.-
L. Lions [10]. In [4] this connection is used to propose discretizations of Hamilton-Jacobi
equations for the numerical solution of conservation laws.

Our approach uses the fact that, for certain uy, the set of values y which possibly
minimize (2) can be considerably restricted. A first step in that direction is the following
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COROLLARY 2. Assumptions as in Theorem [. Additionally let uy be continuous.
Any value y €|z —to_,z—tay| which minimizes (2) satisfies

v+ ta(uoly)) = , (3)

and allows to set Eug(z) = uo(y).
Proof. Differentiating relation (2) yields, by continuity of u,,

uo(y)—ﬁ(x‘y):o.

l

This implies both assertions. 0O

The nonlinear equation (3) is just the one which allows to construct, for smooth w4 and
small ¢, by means of the implicit function theorem, a classical solution of the conservation
law. For larger ¢, equation (3) does not have a unique solution y for whole intervals of z.
Thus, the minimum condition (2) can be understood as a sclection principle for the right
value of y.

The following stability result allows us to change ug slightly, in order to obtain simpler
problems of the kind (3).

THEOREM 3. (KEYFITZ [12]). The entropy solutions of (1) form a nonlinear L'-
contractive semigroup &. Thus, for ug,vy € L'(R), the corresponding entropy solutions
satisfy the estimate

||€tu0 — gt'Ug

L < [Juo — vol|Lt (4)

for all t > 0. A proof may also be found in LAX [8].
For our further development we need some notation:
e The convex hull of two points ug, u; will be denoted by [ug, u1].
e For u € [ug,u,] the barycentric coordinate of u is denoted by Ay, ., () and satisfies

U = (1_)‘%7”1(“))”0 + )\uo,m(u)ul'

e Let (yo,u0),(y1,u1) be two points in R*. The G-interpolant of these points is
given as flug,uy - [yoayll — [uovul] by

Fug,ug ((1 - )‘)y{) + )‘yl) = /8 ((1 - ’\)O‘(UO) + )\a(ul)) ) A€ [Ov 1]

Our assumptions imply, that this is a monoton connection of the two points.
These f-interpolants have the very nice property that (3) may be solved uniquely, as
we show now.
LEMMA 4. For given t > 0 define

@(y) =y + ta(fug,u (¥),

which maps [yo, 1] onto [o(yo), p(y1)]- If p(yo) # w(y1), the equation x = ©(y) is uniquely
solved by the value y given as

Ao s (?/) = Aw(yo),w(m)(m)'
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Proof. Simply note that

(y) = (L= Ay (¥)) (w0 + tauo)) + Ay (¥) (11 + taur ),

and that ¢(y;) = (y; + fa(w;)) for e = 0,1. O

Since integrals are involved in (2), it helps a lot that integrals of A-interpolants can
be computed explicitly:

LEMMA 5. We have, fory € [yo,v1], that

o{ftug,u; (¥))
Y1 — Yo .
y S St U if wo # uy
] :u'uo,ﬂl (n)dﬂ = a(ul) - a(uO) a(uo) ’
Yo
(¥ — vo)uo if ug = u,.

Proof. Let ug # uy. The substitution ¢ = (1= Ayopn () ex(0) +
Ayo.n 1) a(uy) gives

v Y- o /f w
vou (m)dy = — 2L =0 dc.
/you (m)dn alu) = o) Jatuo) B{)d¢

Thus, the assertion follows from (f*) = 3. 0

Now we try to approximate ug by its piecewise 3-interpolant, for which we have seen
that problems (3) and (2) turn out to be fairly simple. For that purpose, let uy be a
piecewise continuous function with suppue CCla,b[. Let Ata=yo <y, < ... <y, = b
be a subdivision of that interval, with mesh-size parameter

b= max (y; — yj-1).

Denote the subintervals by I; = [y;1,y;], 7 = 1,2,...,n. The piecewise 3-interpolant

Ry atg is now defined as

Ryauoly) =

Muo(yj—l)wuo(y;)(y) for yc Ijaj = 1123 RS L
0 elsewhere.

Obviously we have Ryaug € C° and Ryauoly;) = uo(y;), 7 =1,2,...,n.
LEMMA 6. Letl u be a piecewise continuous function on [a,b]. Then the interpolation
operator Ry a salisfies

Hu — RfyAu”Ll[a,b] — 0 fOT h — Q.

Moreover, if the function u is piecewise C?, and we make the assumptions on the fluz f

that f € C* with

M = 11 P o 1 e ) < 20,

where u_ < u{z) < uy for all z € [a,b], then there is a constant ¢ = c(u, M), which gives
us the estimates

Hu — 'Rf,AuHLl[a,b] S Ch., and ||u - Rf,AuHL’(IC) < Chz.
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Here I. = Ujgg, I with Ju = {1 <j <n | (uly,) ¢ C?}.

Proof. We proof the second, smooth part. The first part follows by usual density
arguments. Take any j & J,, and denote the linear interpolation operator at the nodes
Yi—1,Y; by Ia. Since by construction

IARJ',A = IA
we estimate by the usual error expression for linear interpolation
lu = Rpavlleew) < llu—Taulliew) + 1Rrav — TaRpau| oo
A2
< ) (”“H”L""[avb] + ||”Z(y,-1),u(y1)||L°°(IJ)) :

Now we compute, for y € I;, that

'UJZ('!IJ—I )v”(ya)(y)

) I (Mu(yj_x),u(y;)(y)) (a(u(yj)) — a(u(y;-1}) ' uly;) — u(yj—1)) 2

3 : -_ . P .
f” (ﬂu(y;-l),u(y])(y)) u(y.?) u(yj—l) Y — Y1

s (Putyrten @)
I (bbutsry o) (0))

for some 1 € [u(y;_1),u(y)]. ¢ € I, Hence, it is
j € Ju, we simply estimate

f” (7])2 ul(c)Z

"
u(yj_l),u

(y,)||L°°(1J) < M”u’”%m[a,b]' For

v — Ryaullpyy < 2llwl|Leopa bh-

Finally, we observe that #J, < v as h — 0, because we assumed that u is piecewise C*.
Thus, we obtain

b—a
= Ry aulioon < 5= (I leopun + MU onga,n) B + 20wl oo

and

b—a ,
Ju = Ryaullziy < =g (leloston + MllulEogas) b

g

Note that the same result holds for the piecewise linear interpolation operator Z,, as
introduced in the proof.

Remark. The value of the constant M is invariant against transformations f — ~f
with v > 0.

Another important property of Ry is monotonicity. This is a fairly simple conse-
quence of the assumed monotonicity of a, 3.

LEMMA 7. Let u,v be piecewise continuous. The pointwise inequality u < v implies
that pointwise Ryau < Ryav. The same holds for the linear interpolation operator Ta .

74



The Algorithm

Our algorithm solves the following problem: Given a conservation law (1), a piecewise
continuous initial ug, compute for an accuracy TOL and a time £ > 0 an approximation
E,up to the solution Eug such that

| Exuo — ol < TOL. (5)

The algorithm can be stated very roughly as
A. Construct by an adaptive interpolation procedure a mesh Ay, such that the piece-
wise f-interpolant R a,ug of ug fulfills

||u0 - RI,AGUOHLI < TOL /2.

B,. Propagate the function Ry a,ue with the evolution operator & to the time ¢, such
that &R} a,uo(z) is evaluable.

C. Represent by an adaptive interpolation procedure (with the help of step B, ) the

function &R a,uo on a mesh A, by its plecewise -interpolant (resp. piecewise

linear interpolant) Stu(, = R a,ERsa0u0 (resp. Eug = Ta,E R f.agt0), such that

HgtRf,AOUO — 5,5%60”[) S TOL /2

If these steps can be achieved, Theorem 3 guarantees for the accuracy requirement (5).

The choice of the interpolant in Step C, i.e., Za, or Ry a,, 1s not really important. In
fact, any adaptive monotone spline interpolation, which controls the L!'-approximation
error, could be used to represent the solution for fixed times. The 3-interpolant should be
taken, if we intend to use the solution at a particular time as new initial data for another
computation.

We now describe each step more closely. Note that Steps A and C are quite similar
tasks.

Step A. Here, the choice of an appropriate mesh Ag is the essential problem. This

will be done in an adaptive way, starting with a coarse mesh A%. The main loop reads as:
while (estimated L'-error > TOL /2)

{
AFH = refine( AF);
k=Fk+1;

}

Let the kth meshbe A*¥ :a = yf < yf < ... < yﬁk = b. For the following, we will suppress
the index k. The L'-error of the piecewise F-interpolation on the mesh A is given as

n
€ = |[ug — RI,AUOHLI = Z €5,

Yj
CjZ/
Yj—1

J

with

UQ(/:) - “uo(yg—j),uo(y;)(g)‘ dg

The local error ¢; will be estimated by a trapezoidal sum, introducing the midpoint of [;.
Thus, noting the interpolation property, we obtain the local estimate

(Y5 — yj1) Yi—1 + Y; Yic1 + Y;
Ej ~ j: ! 2 ! UQ( ? 2 J) _'uuﬂ(yJ—l)’UO(yJ) (%) '
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Observe that

paspnaton (Z2508) = (5 (atuolasoa)) +alun(yy)) )

In the case that /; is bisected, we note that uo((y;-1 + y;)/2) has already been computed
for ;. Thus, we can readily assign this value to the new node.

The proposed error estimate is sensible for accuracy and complexity reasons. The
global estimate is finally given as

n

DI
j=1

For actual refinement we need some refinement strategy, which uses the local infor-
mation provided by the indicators n;. We have implemented a strategy based on local
extrapolation, which was introduced by BABUSKA and RHEINBOLDT [1] for elliptic prob-
lems.

The actual implementation of the mesh refinement can easily be done by means
of packages designed for finite element computations using tree data structures, e.g.,
ROITZSCH [13].

After the adaptive refinement we are provided with the final mesh Ao, an error
estimate 7 < TOL /2, and each node y; carries the interpolation information wuo(y;). For
purposes of Step B, we should additionally store in each node the integral information

Yj
R s.a0u0(€)dE,

which can be computed by successive application of Lemma 5.

Step C. The piecewise S~interpolant (piecewise linear interpolant) &, of the prop-
agated function &Ry a,to and the mesh A, are computed in a similar fashion as Ry a,to
and Ao. This approximation procedure only demands the possibility of evaluating the
expression &R a,Uo in certain points z.

Step B,. How do we compute &Ry a,uo(z) for a given z? This question will be
addressed now. In preparation of any evaluation, the following values are computed

e(y;) = yi + ta(Rya,uo(y;))

for j = 0,1,...,n. These are the positions of the characteristic transport of the mesh
points y; of Ag. Given z, we first determine the set J, of indices 7, such that

z =y + ta(Rpaco(y)) (6)

possesses a solution y € I;. By construction of Ry a,uo and Lemma 4, this set is exactly
given by

Jo={l<j<n|z€lp(y-1) ey}
For j € J, with @(y;_1) # (y;), we compute the barycentric coordinate
Ai = Mpaymn) et (2)s
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which is, by Lemma 4, also the barycentric coordinate of the unique solution y; € f;,
Le, y; = (1 — A;)yj—1 + Ajy;. In the exceptional case j € J,, o(y;—1) = ¢(y;), all values
yj—1 <y < y; satisfy (6). Thus, the value of the expression in (2) remains constant on
the whole interval [y;_1,y;]. Hence, we may take y; = y;_1 as representative candidate
for the minimizing value of (2). Summarizing, our construction of Ry a,uo allows us to
compute a set of critical points of (2) with cardinality #J,, in which a minimizing value
is included.

In view of Theorem 1 and its Corollary we choose the smallest value g, among those
G;,J € Jz, which minimize (2). Our desired value of &R s, up(z) is given by

ER f,a0t0(2) = Ryazto(fe) = B ((1 = Ae)a(uo(ye—)) + Aealuo(ye)))

For the evaluation of (2} it is necessary to rely on Lemma 5.

If there are several values y; which minimize (2) among the y,, j € J,., we are allowed,
due to Theorem 1, to take any of them: In this case, x is exactly the position of a shock
of &Ry a,ue- All minimizing ¢y produce values for &R a,uo(z) which are between the
left and the right shock value. In fact, since we choose the smallest §;, which minimizes
(2), we can be more specific. We obtain

ngf,/-\ouo(m) = ngf,Aouo('I - O) (7)

for any shock position z. Note that the specification y; = y;_) in the case p(y,;-1) = ¢(y;)
also served this purpose: It guarantees, that the smallest minimizing value of the y; is
really the smallest value of all minimizing values for (2).

A simple implication of the monotonicity property of R;a and Za (Lemma 7), to-
gether with the monotonicity of the semigroup, is the monotonicity of our algorithm as
long as we fix the meshes Ag, A,.

LEMMA 8. Let ug,vo be piecewise continuous functions, such that pointwise ug < vg.
If we use for both functions the same meshes Ag, A;, we obtain that pointwise Eug < Evo.

Proof. Care should be taken, if  is a shock position of both &R ¢ a,uo and ER s a,vo.
Here, one has to rely on (7). If (7) wouldn’t hold, one would have to exclude a neighbor-
hood of . O

In order to run our algorithm, we need procedures for evaluating f, & and 3. If 3 is
not given analytically, we may compute it by Newton’s method.

Numerical Examples

Important: Since we can evaluate &Ry a uo{z) ezactly for any (x,t), ¢ > 0, it should
be clear, that the time-steps of the examples have been solely introduced for graphical
reasons. They are completely arbitrary and independent, and we work for all times with
the same Ry a,uo. Thus, there is no discretization in fime! Once more, we remark,
that any adaptive monotone spline interpolation, which controls the L!'-approximation
error, could be used to represent the function &R, uo. For simplicity, we have chosen
piecewise linear interpolation whenever displacing our approximate solution graphically.

Fzample 1. Here, we consider the nonlinear conservation law

4
U + (uz)mzo
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with initial data

uolz) = 1 for0<z <1,
BT 0 elsewhere.

The inverse of the flux derivative, 3 = ()%, is quite different from a livear function,
giving the S-interpolant a distinguishable shape.

FiG. 1. Example 1. Evolution of the computed solution.

The exact solution is given by

3
()" o<es<t
u{z,t) = 0 elsewhere
1/3 3/4
z < p < (2 1114
(t) O_I“’(B) for ¢t > 4/3.
0 elsewhere

The computed solution for 0 < ¢ < 5, using a time-step 7 == 0.1 for graphical reasons,
can be seen in Fig. 1. If not stated otherwise, we choose as accuracy TOL = 107*. The
solution was represented by the adaptive linear interpolation of Step C.

The solution for the particular time ¢ = 1.0 is shown in Fig. 2, represented by the
adaptive linear interpolation. We observe that, as a result of our construction (7), there
is no mesh point with a value between the left and the right shock value.

The development of the interpolation mesh in time, here with time-step 7 = 0.05,
can be seen in Fig. 3. We can observe nicely, how the rarefaction wave runs into the shock
and slows it down.

Using the adaptive S-interpolation to represent the solution, we get much less mesh
points. This is precisely what should have been expected for this example: Rarefaction
waves are exactly represented by the B-interpolant of the left and right value. For the
same accuracy as above, the corresponding mesh (7 = 0.05) is shown in Fig. 4.
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1.254

0.75

0.59

0.254

Fic. 2. Erxample 1. Solution for t = 1.0, represented by adaptive linear winterpolation.

5.004

3.33

time

1.67

0.00,
-1.00

Fi6. 3. Example 1. Grid, using adaptive linear interpolation.

5.00
1

353

time

1.67

0.00
-1.00

3.00

Fi1G. 4. Example 1. Grid, using adaptive §—interpolation.
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L1—error
1074

F1G. 5. Example 1. Fuolution of the error, true (...} and estimated {—).

The quality of our error estimator can be seen in Fig. 5. We observe a slight error un-
derestimation. Our estimated error 5 at time ¢ is the sum of the estimated S-interpolation
error 7o of the initial data and of the estimated linear interpolation error n; of 4,

n=mno+ N

Compared with the true L'-error ¢, we obtained for all of our experiments (i.e.,0 <t <5,
r = 0.05, TOL =107",...,107®, linear as well as S-interpolation of the solutions}, that

033< 1 <1097,
€

Finally, we show in Fig. 6 the dependence of the CPU-time (in seconds) on the
accuracy TOL, for the case, that we represent the solution at each time by the adaptive
linear interpolation. The comparison has been made using 100 time-steps of size 7 = 0.05
for each accuracy. The dotted line in the double-logarithmic scale has slope —1/2. We
observe, that asymptotically

CPU-time o« TOL™Y2. (8)
This is an optimal result, since, for the set 83, of piecewise linear functions with no more

cpu—time
104

1

104

T oo T e 1.075‘ TS T B oY

Fi1G. 6. Ezample 1. Computing time vs. TOL.
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than n breaks in the first derivative, we obtain
diSt(gtUO,Sz,n) =0 (n_2) s

a result, which can be found in DE BoOOR [5, Theorem I11.2]. Thus, the behavior (8) shows
two things: First, that our mesh was chosen nearly optimal, second, that we realized our
algorithm with an complexity of O(#nodes).

Ezample 2. The problem of this example is given by the inviscid Burgers equation
w2
Ut + ? ) =0

uo(z) = { 2 en(nz = 0) for 0.5 <z <2.5,

2.4 elsewhere.

with initial data

This initial data does not have a compact support, but we can obviously modify our
algorithm to handle this kind of problems.

F1G. 7. Erample 2. Fuvolution of the computed solution.

The continuous initial ug develops a shock at time ¢t = 1/7 & 0.318. The computed
solution can be seen in Fig. 7. It was computed with accuracy TOL = 10~* in the time
interval [0, 1.5], using a time-step 7 = 0.025.

The corresponding mesh is shown in Fig. 8. The number of mesh points varies between
330 at the beginning and 11 at the end.

Figs. 9 and 10 show a zoom into the computed solution represented by piecewise
linear interpolation just before and just after the shock formation. In both cases we have
taken the position z, = 1.5+ 2.4¢, and have shown the computed solution in the interval
[z,—0.01, z,+0.01].

Note that in this problem there is no difference between piecewise linear and 3-
interpolation: Za = Ry a.
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time

1.50

1,004
6504
0.00-
0.00 1.67 353 500
X
FiG. 8. Example 2. Evolution of the mesh.
u
34
,s) ‘\-‘\‘0\‘\
| ‘\.\‘\‘\‘N‘v
bt
154
25 202 258"
Fia. 9. Ezample 2. Zoom into solution, just before the shock (t = 0.3).
u
kY
2.5
24
T B e B o L e e e LA
151
237 2.8 228"

F16. 10. Example 8. Zoom into solution, just after the shock (t = 0.325).
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