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We demonstrate that coupled electronic and nuclear fluxes in molecules can strongly depend on the
initial state preparation. Starting the dynamics of an aligned D+

2 molecule at two different initial
conditions, the inner and the outer turning points, we observe qualitatively different oscillation
patterns of the nuclear fluxes developing after thirty femtoseconds. This corresponds to different
orders of magnitude bridged by the time-evolution of the nuclear dispersion. Moreover, there are
attosecond time-intervals within which the electronic fluxes do not adapt to the nuclei motion
depending on the initial state. These results are inferred from two different approaches for the
numerical flux simulation, which are both in good agreement.

I. INTRODUCTION

In the course of a chemical reaction, the making and
the breaking of bonds is regulated by the correlated mo-
tion of electrons and nuclei. Recent advances in laser
technology allow the resolution of electronic dynamics on
attosecond time scales [1–8] and strongly suggest the the-
oretical investigation of combined nuclear and electronic
motion in molecules.

During the last decades chemical reaction rates have
successfully been approached via nuclear flux computa-
tions [9–11]. Only recently, two complementary methods
for the evaluation of coupled molecular quantum fluxes
have been proposed [12, 13]. In [12], Okuyama et al. use
the Ehrenfest theorem for computing electronic fluxes.
In [13], Barth et al. start from the time-dependent Born-
Oppenheimer approximation and infer approximate elec-
tronic and nuclear fluxes via Gauss’s divergence theorem.

Here we follow the approach developed in [13] and ex-
plore coupled nuclear and electronic fluxes, focussing on
their dependence on the initial state. Our theoretical in-
vestigations are partly motivated by recent experiments
on N2O4 [15]. There, strong higher harmonics are gen-
erated depending on whether the pump pulse excites the
vibrational ground state to the inner or the outer turn-
ing point. At this point, the question that may naturally
arise is what would be the impact of a comparable initial
preparation at the molecular flux level? To the best of
our knowledge, such an investigation has not yet been
considered.

Our working example is the deuterium molecular
ion D+

2 , which is chosen as a prototype for the future in-
vestigation of more complex molecules. Here we demon-
strate that the time-evolution of coupled molecular fluxes
strongly depends on the initial state preparation and is
qualitatively different, when starting on the inner or the
outer turning point. When the initial wavefunction is set
at the inner turning point, the nuclear fluxes form pro-
nounced oscillations after thirty femtoseconds, which is
not the case for the outer initial state. This difference

corresponds to different orders of magnitude bridged by
the time-evolution of the nuclear dispersion. Moreover,
the initial state affects the synchronicity as well as the di-
rectionality of both nuclear and electronic fluxes. There
are attosecond time-intervals within which the electronic
fluxes do not follow the nuclear ones. The robustness
of these phenomena with respect to the position of the
observer is shown, and numerical results are confirmed
by simulations for the time-dependent Schrödinger equa-
tion with explicit dependence on electronic and nuclear
degrees of freedom. All these results complement con-
siderably the findings of our earlier application on H+

2 in
which the initial condition is exclusively set at the outer
turning point [13].

The article is organized as follows. In Sec. II our
model of D+

2 is described together with the preparation
of the initial states. Sec. III defines the electronic and nu-
clear fluxes and discusses their computation via the Born-
Oppenheimer approximation. In Sec. IV we present the
time-evolution of the fluxes and discuss the obtained re-
sults, especially the differences with respect to the os-
cillation pattern and the synchronicity of electronic and
nuclear fluxes. Sec. V summarizes and concludes the
present work. The appendix A collects details of the nu-
merical simulations.

II. THE MODEL AND INITIAL STATES

Our model of the deuterium molecular ion D+

2 in the
electronic ground state 1σg consists of one-dimensional
motion of the nuclei and two-dimensional motion of the
electron. It is aimed at vibrational processes occuring on
the femtosecond time scale, which is much earlier than
the slower rotational time scale of the molecule.

One describes the electron in cylindrical coordinates
(r cosφ, r sinφ, z) and assumes that the nuclei localize
along the electronic z-axis for the time-scale of interest.
Consequently, nuclear motion is described by the inter-
nuclear distance R alone. This allows to eliminate the
electronic angular variable φ, and only three spatial de-
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grees of freedom (r, z, R) are left for the dynamics. Then,
the time-dependent Schrödinger equation can be written
as (me = h̄ = e = 1),

i
∂

∂t
Ψ(r, z, R, t) = HΨ(r, z, R, t) (1)

with

H = Te + Tn + Vnn + Ven

the molecular Hamiltonian and Ψ(r, z, R, t) the total
wavefunction of the electron and the nuclei. Here, Tn =
−1/(2µn)∂2/∂R2 is the kinetic energy of the nuclei with
the reduced mass µn = md/2 = 1836 au, Vnn = 1/R the
nuclei-nuclei interaction,

Te = −
1

2µe

∂2

∂z2
−

1

2µe

(

∂2

∂r2
+

1

r

∂

∂r

)

,

the electronic kinetic energy with 1/µe = 1 + 1/(2md),
and

Ven = −
1

√

r2 + (z − R/2)2
−

1
√

r2 + (z + R/2)2
,

the electron-nuclei interaction.
Our initial state is the Born-Oppenheimer wavefunc-

tion

Ψ(r, z, R, t = 0) = Ψn(R, t = 0) × Ψe(r, z; R). (2)

The nuclear wavefunction Ψn(R, 0) is the ground state
of the neutral molecule D2, promoted to D+

2 (1sσg); while
the electronic wavefunction Ψe(r, z; R) is the 1sσg elec-
tronic wavefunction of D+

2 parametrized by the internu-
clear distance R. Details on the preparation of our initial
states can be found in appendix A1.

Figure 1 illustrates this set-up. The upper panel (a)
shows the potential energy surface V (R) of D+

2 together
with the two different initial states of our dynamics. The
regions (1) and (2) correspond to the outer and inner
turning points with respect to the equilibrium internu-
clear distance Req = 2.0a0. The center of the nuclear
wavepacket Ψn(R, 0) is chosen as R1 = 3.125a0 and
R2 = 1.5a0, respectively. The energies of the associ-
ated states are identical and equal to E = −0.575 a.u..
In the lower panel (b), the acting force K = −dV/dR
clearly shows that the nuclear wavepacket is driven more
strongly in the inner region (2) than in the outer re-
gion (1). A more detailed discussion of the influence
of this force on the nuclear dispersion is provided in
sec. IVB.

III. THE FLUXES

From the total wavefunction Ψ(r, z, R, t) one de-
rives the continuity equation for the total density
ρtot(r, z, R, t) = |Ψ(r, z, R, t)|2:

ρ̇tot(r, z, R, t) = −∇ · j(r, z, R, t). (3)
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FIG. 1: (Color online) The upper panel (a) shows the po-
tential energy surface V (R) of D+

2 . The outer (1) and the
inner (2) regions denote the initial locations of the nuclear
wavepackets centered at R1 and R2, respectively. These
wavepackets have been promoted to D+

2 from the ground state
of D2. The dot-dashed vertical lines indicate the location
of our observer Robs. The lower panel (b) shows the force
K = −dV/dR acting on the nuclear wavepacket. The equi-
librium internuclear distance Req is indicated by a dashed
vertical line.

The total current density is

j =

(

1

µe
Im(Ψ∗∇eΨ)

1

µn

Im(Ψ∗∇nΨ)

)

,

where the gradient in nuclear and in electronic coordi-
nates is denoted by ∇n and ∇e, respectively.

A. The electronic flux

We turn to the electronic density

ρe(r, z, t) =

∫

dR|Ψ(r, z, R, t)|2. (4)

Integrating the full continuity equation, Eq. (3), over the
nuclear degrees of freedom, one obtains the reduced con-
tinuity equations for the electrons

ρ̇e(r, z, t) = −∇e · je(r, z, t), (5)

where

je =
1

µe

∫

dR Im(Ψ∗∇eΨ) (6)

is the electronic current density. We are interested in
monitoring the flux through the observer surface Aobs,
which is the boundary of a subset of the volume Vobs.
This is given by the surface integral

Fe(t; Aobs) = −

∫

Aobs

dA · je. (7)
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Following Barth et al. [13], we use the divergence the-
orem together with the electronic continuity equation,
Eq. (5), to rewrite the flux in terms of the density,

Fe(t; Aobs) =
d

dt

∫

Vobs

dV ρe. (8)

Integrating over the time interval [0, t] we obtain the as-
sociated electronic yield

Ye(t; Aobs) =

∫ t

0

dτFe(τ ; Aobs). (9)

In our model system, the surface of observation is de-
fined by two planes parallel to the plane z = 0 with dis-
tance Robs, i.e. zobs = ±Robs/2, as illustrated in Fig. 2.
Therefore, in the associated observing volume Vobs, the
electronic flux can be expressed as

Fe(t; Aobs) =
d

dt

∫

∞

0

rdr

∫ zobs

−zobs

dzρe(r, z, t). (10)

The observer position Robs should allow to monitor max-
imum fluxes for both sets of initial states. Therefore we
have chosen Robs = 2.5a0.

B. The BO approximation

One way for computing the electronic and the nuclear
fluxes is the numerical solution of the time-dependent
molecular Schrödinger equation, Eq. (1). The state-of-
the-art methods [16, 17], which treat this problem in full
dimensionality, are still restricted to three-body problems
such as our working model, although few extensions to
larger systems have been proposed [4, 18, 19]. In gen-
eral, however, the Born-Oppenheimer (BO) approxima-
tion [20] proposed in 1927 is still indispensable.

The BO approximation is based on the large ratio be-
tween nuclear and electronic masses. The nuclei are thus
slower thereby allowing the approximation of their dy-
namics by an effective equation of motion with averaged
electronic degrees of freedom, while the electronic aver-
aging process works with the nuclei frozen in a given con-
figuration. It basically allows to break the wavefunction
of a molecule in its electronic and nuclear components.
For our model, the total wavefunction Ψ(r, z, R, t) is ap-
proximated by the BO wavefunction

ΨBO(r, z, R, t) = Ψn(R, t) × Ψe(r, z; R). (11)

The electronic wavefunction Ψe(r, z; R), that depends
parametrically on the nuclear degree of freedom R, is the
solution of the time-independent electronic Schrödinger
equation

HeΨe(r, z; R) = V (R)Ψe(r, z; R) (12)

with He = Te + Vnn + Ven the electronic Hamiltonian
and V (R) the potential energy surface (PES). The nu-

FIG. 2: (Color online) Visualization of the initial states as
defined in Fig.1. The upper panel represents the inner initial
state and the lower panel the outer one. The electronic den-
sities, with its associated color code, surrounds the nuclear
density in red/gray color. The space inside the two parallel
planes of the observer Aobs, in yellow/light-gray color, corre-
sponds to the volume of the observer Vobs. The two planes
are located at zobs = ±Robs/2, where Robs is the distance
separating the two planes. This visualization has been cre-
ated using the academic system ZIBAmira, a superset of its
commercial version Amira[14].

clear wavefunction Ψn(R, t) is the solution of the time-
dependent nuclear Schrödinger equation

i
∂

∂t
Ψn(R, t) = (Tn + V (R)) Ψn(R, t). (13)

We note that the electronic wavefunction is the elec-
tronic ground state of D+

2 which is indeed real-valued.
This makes it problematic to use of the BO approxi-
mation for the computation of the gradient of the total
wavefunction. Specifically the electronic current density
is zero, see Eq.6, in contrast to what one would expect.
Therefore we do not employ the current density je but in-
stead the density ρe to compute the fluxes via the density
formulation, Eq. (8).
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C. The nuclear flux

For the derivation of the nuclear flux we proceed sim-
ilarly as for the electronic one. We define the nuclear
density

ρn(R, t) =

∫

dzrdr|Ψ(r, z, R, t)|2. (14)

It satisfies the reduced continuity equation

ρ̇n(R, t) = −∇n · jn(R, t) (15)

with the nuclear current density

jn =
1

µn

∫

dzrdr Im(Ψ∗∇nΨ).

The nuclear flux through the surface Aobs is

Fn(t; Aobs) = −

∫

Aobs

dA · jn =
d

dt

∫

Vobs

dV ρn,

and its time integration gives the associated nuclear yield

Yn(t; Aobs) =

∫ t

0

dτFn(τ ; Aobs).

In this case the nuclear flux can explicity be written as

Fn(t; Aobs) =
d

dt

∫ Robs

0

dRρn(R, t). (16)

IV. RESULTS AND DISCUSSIONS

The results presented in the following section show a
good qualitative agreement of the fluxes obtained by solv-
ing the full molecular Schrödinger equation, Eq. (1), and
by computing the BO wavefunction, Eq. (11). Our dis-
cussion puts the main focus on the oscillation pattern
of the electronic and nuclear fluxes as well as their syn-
chronicity. We also monitor electronic and nuclear dis-
persion for explaining part of the flux dynamics. Numeri-
cal aspects for the dynamics can be found in appendixA2.

A. Oscillation pattern

Figures 3 and 4 display results for the dynamics up
to 72fs. The initial wavefunctions are localized around
the outer turning point R1 = 3.125a0 and the inner one
R2 = 1.5a0, respectively. We compare results of the
BO computations with the simulations based on the full
molecular Schrödinger equation.

The upper panels (a) in both figures show the mean
bond length 〈R〉 = 〈Ψ(r, z, R, t)|R|Ψ(r, z, R, t)〉 as a func-
tion of time. The observer position at Robs = 2.5a0 is
indicated by a dashed horizontal line. The lower panels
(b) and (c) show both electronic and nuclear fluxes and
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FIG. 3: (Color online) Dynamics for the outer initial condi-
tion centered in R1 = 3.125a0. The underlying simulations
solve the full molecular Schrödinger equation (red/gray) or
use the BO approximation (black). Nuclear quantities are
plotted by solid lines, electronic ones by dashed lines. The
upper panel (a) shows the mean bond length. Additionally,
the observer location at Robs = 2.5a0 is indicated as a dashed
horizontal line. The lower two panels show the evolution of
the electronic and nuclear fluxes (b) and the yields (c). The
dynamics within the regions marked by A and B are more
thoroughly discussed in Sec. IVB.

the corresponding yields through the symmetric planes
zobs = ±Robs/2, respectively.

For the outer initial condition (Fig. 3), the nuclear
yield reaches a maximum value of 1 around the inner
turning point (〈R〉 ≈ 1.55a0 and t ≈ 12fs). The maxi-
mal electronic yield equals 0.32, which is less than 0.5.
Hence the nuclei move almost completely from their ini-
tial location to the inner region, in contrast to the elec-
tron. After 12fs, the nuclear yield gets slightly damped,
while the electronic yield slowly oscillates with compa-
rable amplitudes. The nuclear flux reaches its maximal
value of 0.20 close to the equilibrium internuclear dis-
tance Req = 2.0a0. The electronic flux shows a more
regular oscillation pattern than the nuclear one.

For the inner initial condition (Fig. 4), the nuclear
yield reaches a minimal value of approximately −0.8
around time t = 12fs. The corresponding bond length is
〈R〉 ≈ 3.0a0. After 24fs, more vivid oscillations develop
for both the nuclear yield and flux. These are finger-
prints of quantum interference, due to the mixing of the
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FIG. 4: (Color online) Dynamics for the inner initial condition
centered in R2 = 1.5a0. The displayed quantities as well as
their line encoding are the same as in Fig. 3.

nuclear fragments traveling forth and back. Since the ini-
tial slopes of the nuclear force, see Fig. 1(b), are different
for the two initial conditions, the outer initial state does
not generate a comparable interference pattern. One also
notes that all the fluxes and yields in Fig. 4 are damped
as time evolves. The electronic flux almost tends to zero,
which is not the case in Fig. 3 either.

Our results are robust with respect to the location
of the observer. Figure 5 shows the electronic and nu-
clear fluxes for both the outer (Fig. 5(a)) and the inner
(Fig. 5(b)) initial conditions, at three different locations
of the observer, Robs = 2.3a0, 2.4a0, and 2.5a0. The mod-
ulation of the fluxes and in particular the oscillation pat-
terns persist when varying the observer position.

The flux computation via the full Schrödinger equation
produces small high frequency oscillations at the initial
stage (within ≈ 3fs), see the panels (b) in Figures 3
and 4, respectively. This numerical artifact, associated
with the BO initial wavefunction, has also been observed
in the previous simulations for H+

2 [13].
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B. Dispersion and synchronicity

We have also computed both the nuclear and the elec-
tronic dispersions:

∆R(t) =

(
∫

dR ρn(R, t) (R − 〈R〉)
2

)1/2

, (17)

∆z(t) =

(
∫

rdr dz ρe(r, z, t) (z − 〈z〉)
2

)1/2

, (18)

∆r(t) =

(
∫

rdr dz ρe(r, z, t) (r − 〈r〉)
2

)1/2

. (19)

Figure 6 displays their time-evolution for the outer ini-
tial condition (black lines) and the inner one (red/gray
lines). Irrespective of the initial conditions, the electronic
dispersion is in general larger than the nuclear one. For
the first 3fs, the nuclear dispersion for the inner initial
condition decreases due to the wavefunction’s location
at the very steep wall. Afterwards, it fastly increases
and eventually reaches, as from 36fs on, the strong elec-
tronic dispersion level. At this step, one may wonder
why such strong oscillations mostly occur in the inner
case and less in the outer one? To answer this question
we first notice that although the initial wavepackets for
both cases are identical, with the same potential energy,
the content of their vibrational eigenstates is totally dif-
ferent. Due to the steepness of the potential, the inner
case initially contains more eigenstates than the outer
one. During the propagation, the wavepackect of inner
case, superposition of many eigensates, exhibits a very
pronounced dispersion (as already observed above) than
the wavepacket of the outer one.

The increase of the nuclear dispersion for the inner ini-
tial state coincides with the irregular oscillations of the
nuclear flux in Figure 4(b). Also the different magni-
tudes of the nuclear and electronic yield in Figure 3(c)
can be linked with the different levels of the correspond-
ing dispersion. Moreover, the electronic fluxes, yields and
dispersions all show a regular oscillation pattern.

Analysing the synchronicity of nuclear and electronic
fluxes more closely, we have zoomed in the regions A
and B of the previous Figures 3(b) and 4(b). For the
outer starting condition (Fig. 7, A-Outer), the nuclei and
the electron initially move in the same direction, while for
the inner start (Fig. 8, A-Inner) both move in opposite
directions for about 3.5 fs. Around the next turning point
we also observe different behavior depending on the ini-
tial preparation. For the outer start (Fig. 7, B-Outer),
the electron changes its direction before the nuclei with
a time delay of 840 as, while for the inner start (Fig. 8,
B-Inner) the electron effectively follows the nuclei with
a time delay of 1.04 fs. The zooms therefore illustrate,
that the light electron need not immediately adapt to
the motion of the heavier nuclei.

0 1 2 3 4
0

0.01

0.02

11 12 13 14 15
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

A -Outer

B -Outer

fl
u

x 
(1

/f
s)

time (fs)
fl

u
x 

(1
/f

s)

840as

(a)

(b)

FIG. 7: (Color online) Zooms of regions A and B of Fig-
ure 3(b) for the nuclear flux (solid) and the electronic one
(dashed). The electron and nuclei start moving synchronously
(A-Outer). At later time (B-Outer), the electron returns first
and after 840as, the nuclei follow.

V. SUMMARY AND CONCLUSION

The quantum evolution of coupled electronic and nu-
clear fluxes in an aligned deuterium molecular ion D+

2 has
been investigated, focussing on the initial state prepa-
ration. For large amplitude vibrational excitations, we
show that the dynamics strongly depends on whether
the process is initiated at the inner or at the outer turn-
ing points with respect to the equilibrium nuclear dis-
tance. Along these lines, the importance of such an ini-
tial state dependence on the generation of high harmon-
ics has been demonstrated with a recent experiment on
N2O4 molecules [15]. We believe that the presented the-
oretical work could motivate and eventually constitute a
guide for experiments on coupled electronic and nuclear
fluxes in a molecular model consisting of one-electron and
two-nuclei such as H+

2 and its isotopes.
Exploring the long time dynamics (72fs) in more de-

tails, we found in particular that nuclear fluxes exhibit
high frequency oscillations for the inner turning point
as initial condition. These oscillations are signatures of
quantum interference that manifests itself as the mixing
of nuclear wavepackets travelling forth and back. Fur-
thermore, we have identified attosecond intervals with
surprising behavior. These intervals always occur close
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FIG. 8: (Color online) Zooms of regions A and B of Fig-
ure 4(b) for the nuclear flux (solid) and the electronic one
(dashed). Until 3.5fs, the electron and nuclei move in oppo-
site directions (A-Inner). At later time (B-Inner), the nuclei
return and the electron follows with a delay of 1.04fs.

to the turning points where fluxes are small. It turns
out that electrons need not always follow the nuclei as
common intuition may predict.

The good agreement between the coupled fluxes com-
puted either by the full molecular Schrödinger equation
or by the BO approximation is encouraging and suggests
the latter as an promising approach to tackle coupled
electronic and nuclear fluxes in polyatomic molecules.
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Appendix A: Numerical aspects

1. Initial preparation

Using the Gaussian package 03 [24] involving CISD
calculations with aug-cc-pV5Z basis sets[25], we solve
the time-independent electronic Schrödinger equation,
Eq.(12). This provides us with the PES of the electronic
ground states of D2 and D+

2 as well as their corresponding
electronic wavefunctions. The nuclear vibrational ground
state of D2 is subsequently promoted to the PES of D+

2

and translated such that it is centered in R1 = 3.125a0

or R2 = 1.5a0.

2. Dynamics

The three-dimensional molecular Schrödinger equa-
tion, Eq.(1), has been solved by the method developed
in [16]. The computations discretize the cylinder of ra-
dius r0 = 18.0a0 and height 2z0 = 36a0 (z ∈ [−z0, +z0])
with 50 respectively 110 grid points. For the internuclear
distance R ∈ [0, 16.0a0], 256 grid points have been used.

The one-dimensional nuclear Schrödinger equation,
Eq.(13), has been solved using the symmetrized split-
ting method together with the Fast Fourier transform
(FFT) [21, 22]. An absorbing mask [23] has been used in
order to avoid unphysical reflections at the boundary.

Moreover, we have performed a convergence study with
respect to the nuclear flux and the yield. Table I collects
the time averaged differences computed with varying res-
olution, while the reference value is obtained with 2048
grid points. The ratio of the 128-error over the 256-error
is 25 for the yield and 20 for the flux. From 256 to 512 and
from 512 to 1024 we have a convergence rate of about 16
for both. Therefore, our simulations use 256 grid points
for the internuclear distance.

TABLE I: Time averaged error of nuclear yield and flux

R1 = 1.5a0 R2 = 3.125a0

resolution yield flux yield flux
128 2.18e-03 2.1e-06 2.01e-03 7.74e-07
256 8.56e-05 1.02e-07 1.02e-04 4.03e-08
512 5.22e-06 6.25e-09 6.13e-06 2.55e-09
1024 3.0e-07 3.57e-10 3.6e-07 1.58e-10


