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Abstract. The aim of this text is to present a surface hopping approximation
for molecular quantum dynamics obeying a Schrödinger equation with cross-
ing eigenvalue surfaces. After motivating Schrödinger equations with matrix
valued potentials, we describe the single switch algorithm and present some
numerical results. Then we discuss the algorithm’s mathematical justification
and describe extensions to more general situations, where three eigenvalue sur-
faces intersect or the eigenvalues are of multiplicity two. We emphasize the
generality of this surface hopping approximation for non-adiabatic transitions.

1. Molecular Quantum Dynamics

1.1. The Schrödinger Equation. The quantum-mechanical description of molec-
ular dynamics is given by the time-dependent Schrödinger equation

(1.1)

{
iε ∂tΨ

ε = Hε
mol Ψ

ε,
Ψε

t=0 = Ψε
0 ∈ L2(R3N ,C).

The integer N is N = ke+ kn, where kn is the number of nuclei and ke the number
of electrons. If q ∈ Rd, d = 3kn, denotes the nucleonic coordinates, then the
Hamiltonian Hε

mol writes

Hε
mol = −ε

2

2
∆q +He(q),

where He(q) is the electronic Hamiltonian. It comprises the electrons’ kinetics,
the electronic interaction and the interaction between electrons and nuclei for fixed
nucleonic position q. In atomic units, the electronic mass is one, while the average
nucleonic mass M is large. Therefore the parameter ε is small:

ε =
√
1/M ≪ 1.

Placing ε in front of the time derivative in (1.1) singles out the effective time scale,
on which relevant nucleonic quantum motion is expected.

1.2. The Energy Surfaces. We consider σ∗(q) a closed isolated subset of the
spectrum σ(He(q)), we suppose that

σ∗(q) = {λ+(q), λ−(q)}, λ−(q) ≤ λ+(q)

with λ+(q) and λ−(q) eigenvalues of multiplicity 1, and we suppose that there
exists a smooth real-valued basis of the vector space Λ(q) which is the sum of the
eigenspaces associated with λ+(q) and λ−(q).
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2 C. FERMANIAN AND C. LASSER

If the initial data Ψε
0(q) ∈ Λ(q), then Ψε can be approximated by a Born-Oppenheimer

solution Ψε
BO modulo an error of order ε: ∃C > 0, ∀t > 0,

‖Ψε(t)−Ψε
BO(t)‖L2 6 C(1 + |t|) ε.

Since the basis of Λ(q) is real-valued, the nucleonic components of Ψε
BO satisfy the

Schrödinger system

(1.2)

{
iε∂tψ

ε = − ε2

2 ∆qψ
ε + V (q)ψε,

ψε
t=0 = ψε

0 ∈ L2(Rd,C2),

where the potential V (q) is a smooth function, whose values are 2×2 real symmetric
matrices (see [19] or [18]); besides, the eigenvalues of V (q) are λ+(q) and λ−(q).

We denote by g the gap function

g(q) = λ+(q)− λ−(q).

The function g is non-negative and smooth outside the set

S = {q ∈ Rd; g(q) = 0},
on which the eigenvalues coincide.

1.3. The Effective Potential. We write

V (q) = α(q) Id + V0(q)

where α(q) = 1
2 (λ

+(q) + λ−(q)) is the half of the trace of the matrix V (q), and
V0(q) denotes the trace-free part of V (q),

V0(q) =

(
β(q) γ(q)
γ(q) −β(q)

)
.

In this notation, g(q) = 2
√
β(q)2 + γ(q)2. The matrix V (q) is the prototype po-

tential for crossings of two eigenvalues of multiplicity 1.

Consider now the eigenprojectors Π±(q):

Π±(q) =
1

2

(
Id± 2

g(q)
V (q)

)
.

They are smooth away from the crossing S. We choose initial data for the wave
function which are localized along the plus or the minus level. They are of the form

ψε
0(q) = Π+(q)ψε

0(q) or ψε
0(q) = Π−(q)ψε

0(q).

We analyze the solution to (1.2) for small values of ε.

1.4. The Wigner Transform. The wave function by itself has no physical mean-
ing, and the quantities of interest are quadratic functions of it such as

• the energy level populations:

t 7→
(
Π±(q)ψε(t, q), ψε(t, q)

)
L2(Rd,C2)

,

• the position expectation value with respect to the j-th direction:

t 7→ (qjψ
ε(t, q), ψε(t, q))L2(Rd,C2) ,

• the momentum expectation value with respect to the j-th direction:

t 7→ (−iε∂jψε(t, q), ψε(t, q))L2(Rd,C2) .
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SINGLE SWITCH SURFACE HOPPING FOR MOLECULAR QUANTUM DYNAMICS 3

The analysis of these quadratic functionals leads to the study of quantities of the
form

Lε(a(q)) =

∫

Rd

(a(q)ψε(t, q), ψε(t, q))
C2 dq

or

Lε(b(p)) = (2π)−d

∫

Rd

(
b(p)ψ̂ε(t, p/ε), ψ̂ε(t, p/ε)

)
C2

dp

with a, b ∈ C∞(Rd,C2,2). Therefore, we focus on the description of the time
evolution of the Wigner transform of ψε(t),

(1.3) W ε(ψε(t))(q, p) = (2π)−d

∫

Rd

ψε
(
q − ε

2v, t
)
⊗ ψε

(
q + ε

2v, t
)
ei v·p dv,

which plays the role of a generalized density on phase space. Indeed, one can check
that

Lε(a(q)) =

∫

R2d

tr (a(q)W ε(ψε(t))(q, p)) dq dp,

Lε(b(p)) =

∫

R2d

tr (b(p)W ε(ψε(t))(q, p)) dq dp.

We mention that other density functions on phase space could be considered in
place of the Wigner function. However, the single switch approximation we are
aiming at is tailored to the Wigner function, see also [14, §7.2].
We focus here on quadratic quantities related to one precise mode and study the
diagonal part of the Wigner transform, Π±(q)W ε(ψε(t))(q, p)Π±(q), before and
after passing the crossing S. Since the eigenvalues are of multiplicity 1, these
matrices are utterly characterized by their traces, and we study

wε
±(t, q, p) = tr

(
Π±(q)W ε(ψε(t))(q, p)Π±(q)

)
.

Our aim is to describe the evolution of wε
±(t) in terms of wε

+(0) or w
ε
−(0) for small

values of ε.

1.5. The Classical Trajectories. We consider the classical flow

Φt
± : R2d → R2d , Φt

±(q0, p0) =
(
q±(t), p±(t)

)

associated with the Hamiltonian curves of |p|2

2 + λ±(q):
{
q̇±(t) = p±(t), ṗ±(t) = −∇λ± (q±(t)) ,
q±(0) = q0, p±(0) = p0

• As long as g(q) = O(1), the classical flows Φt
± are enough for an approxi-

mate description of the dynamics:∫

R2d

(
wε

±(t)− wε
±(0) ◦ Φ−t

±

)
(q, p) a(q, p) dq dp = O(ε).

This is an approximation in the spirit of the Egoroff Theorem.
• If g(q) is much larger than

√
ε in a sense that can be made precise, one can

prove that this approximation description still holds in a weaker sense (see
Proposition 2.3 in [7] for precise statements).

• If g(q) = O(
√
ε) this approximation is no longer valid, and there are non-

adiabatic transitions between the levels. The energy propagated until the
transition region on one level may pass (partially or utterly) to the other
one.
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4 C. FERMANIAN AND C. LASSER

We denote by Uε the transition region

Uε = {q ∈ Rd; g(q) ≤ R
√
ε}

where R > 0 is a constant arbitrarily chosen. It is in this region that the Egoroff
type approximation fails and where transitions between the levels occur.
Note that the classical trajectories are well defined as long as g is smooth, i.e. as
long as g(q) 6= 0. However, if the assumption

(1.4) (p · ∇β(q), p · ∇γ(q)) 6= 0

is satisfied near a crossing point q ∈ S, then any classical trajectory reaching the
point q with momentum p has a unique continuation through it (see [6]). We will
see the importance of this condition in section 5, when discussing the limitations
of our approximation.

2. The Single Switch Algorithm

2.1. Main Description. We suppose that the initial data are localized along
the plus level: ψε

0(q) = Π+(q)ψε
0(q). The situation where the initial data is on

the other level is treated analogously. For high dimensions, a Monte-Carlo ap-
proach is more appropriate than a grid-based algorithm (see Section 5.1 for such a
procedure). The single switch algorithm consists of four steps:

(1) One samples the initial Wigner functions (q, p) 7→ wε
+(0, q, p) to obtain a set

of N+(0) phase space points

(q+j , p
+
j ), 1 ≤ j ≤ N+(0),

so that

1

N+(0)

N+(0)∑

j=1

a(q+j , p
+
j ) ≈

∫
a(q, p)wε

+(0, q, p)dq dp.

We note that the numerical computation of the oscillatory Fourier integrals (1.3)
determining the values of wε

+(0) is challenging in high dimensions, see also [14].
(2) One proceeds to classical transport of the sampling points and obtains at

each time t a family of points

(q+j (t), p
+
j (t)), 1 ≤ j ≤ N+(0).

(3) Whenever these trajectories attain a local minimal eigenvalue gap inside the
transition region Uε, one allows for hops to the other surface. Suppose the trajectory
t 7→ (q+(t), p+(t)) reaches its minimal gap at time t∗, that is, t 7→ g(q+(t)) attains
a local mimimum for t = t∗. One evaluates the transition rate

Tε(q
∗, p∗) = exp

(
− π

4ε

g(q∗)2

|det p∗ · ∇V0(q∗)|1/2
)

in the point

(q∗, p∗) = (q+(t∗), p+(t∗)),

where

|det p∗ · ∇V0(q∗)| = (p∗ · ∇β(q∗))2 + (p∗ · ∇γ(q∗))2 .
Then one uses an accept-reject procedure and compares with a pseudo random
number ξ uniformly distributed in the interval [0, 1]. If ξ < Tε(q

∗, p∗), then the
trajectory is continued on the upper level. Otherwise, one hops to the lower level
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SINGLE SWITCH SURFACE HOPPING FOR MOLECULAR QUANTUM DYNAMICS 5

and initiates a trajectory in (q−(t∗), p−(t∗)) = (q∗, p∗ + ω(q∗, p∗)), where the drift
may be chosen as

ω(q∗, p∗) = g(q∗)
p∗

|p∗|2 .

In this way one obtains a family of points

(q±j (t), p
±
j (t)), 1 ≤ j ≤ N±(t).

In section 2.2 below the drift and a simple criterium for determining local minimal
gaps are discussed, while a heuristic derivation of the transition rate is provided in
section 4.1.

(4) At some final time tf , we are left with two sets of phase space points, one
related with the upper surface and the other with the lower one. If N = N+(tf )
points (q1, p1), . . . , (qN , pN ) have arrived on the upper surface, for example, then
expectation values can be approximated as

∫

R2d

a(q, p)wε
+(t, q, p)dq dp ≈ 1

N

N∑

j=1

a(qj , pj).

2.2. Drift and Jump Criterium. We now motivate the choice of the drift and
discuss a criterium for local minimal gaps. At a jump point (q∗, p∗) one shifts the
initial momentum of the created trajectory in order to preserve the energy of the
trajectories up to O(ε). Indeed, the energy of a plus incoming trajectory is

τ+(q∗, p∗) =
1

2
|p∗|2 + α(q∗) +

1

2
g(q∗)

and the energy of a minus outgoing trajectory with momentum p∗out = p∗+ω(q∗, p∗)
is

τ−(q∗, p∗out) =
1

2
|p∗ + ω(q∗, p∗)|2 + α(q∗)− 1

2
g(q∗).

The condition τ−(q∗, p∗out) = τ+(q∗, p∗) + O(ε) is equivalent to ω(q∗, p∗) · p∗ +
1
2 |ω(q∗, p∗)|2 = g(q∗) +O(ε). This can be ensured by choosing

ω(q∗, p∗) = g(q∗)
p∗

|p∗|2 ,

since g(q∗)2 = O(ε). Note that in the work of Hagedorn and Joye (see [11] and [12])
a similar drift is required.

For monitoring the size of the gap we work with the smooth quantity

g(q)2 = 4
(
β(q)2 + γ(q)2

)
.

We observe that along a plus trajectory, we have

d

dt

[
g(q+(t))

]2
= 2 g(q+(t))

d

dt
g(q+(t))

= 2 g(q+(t)) p+(t) · ∇g(q+(t)).
Therefore at time t∗, the function t 7→ g(q+(t)) p+(t) · ∇g(q+(t)) changes sign from
negative to positive, and a jump point (q∗, p∗) satisfies the equation

(2.1) g(q∗)p∗ · ∇g(q∗) = 0.
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6 C. FERMANIAN AND C. LASSER
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(a) The eigenvalue surfaces of (3.1).
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(b) The dynamics of the population and the momentum expec-
tation value for the upper level.
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(c) The accuracy of the single switch algorithm for the popula-
tion and momentum expectation value of the lower level.

Figure 1. When the solution passes by the avoided crossing, the
level population changes. The single switch algorithm resolves the
non-adiabatic dynamics with an error of few percent.
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SINGLE SWITCH SURFACE HOPPING FOR MOLECULAR QUANTUM DYNAMICS 7

3. Numerical realization

To illustrate the behavior of the single switch algorithm we consider a simple
example of an avoided crossing in one space dimension, which meets the range of
validity of our analysis. Further numerical results for avoided crossings have been
obtained in [8], where the test cases discussed by J. Tully in [21] are revisited. Suc-
cessful simulations with the single switch algorithm for conical crossings have been
reported in [7, 16, 14], where model systems for the cis-trans isomerization of reti-
nal in rhodopsin, the internal conversion of pyrazine, and Jahn-Teller Hamiltonians
have been treated.

The eigenvalues of the potential considered here are defined by smooth functions
and the coefficients except for the gap parameter δ are of order one with respect to
the semiclassical parameter ε. The potential matrix is of the form

(3.1) V (q) =

(
arctan(q) δ

δ − arctan(q)

)
.

The surfaces have their minimal gap at q = 0, see Figure 1(a). The initial data are
multiples of a Gaussian wave packet with phase space centers (q0, p0) ∈ R2 and of
a real-valued eigenvector e±(q) of the matrix V (q):

ψ0(q) = (πε)−1/4 exp
(
− 1

2ε (q − q0)
2 + i

εp0(q − q0)
)
e±(q).

The semiclassical parameter ε is chosen as ε = 10−3, the gap parameter as δ =
√
ε.

The initial data are associated with the upper eigenvector e+(q) and are centered
in the point (q0, p0) = (−1, 1). We simulate the dynamics for the time interval
[0, T ] = [0, 2].

The reference values are obtained from a numerically converged grid based solver,
a Strang splitting scheme with Fourier differencing. Since the initial wave function is
a Gaussian wave packet, the sampling from wε

+(0) is realized by drawing N = 2000
sampling points from a two-dimensional normal distribution. The results gathered
in Figure 1(b) are the mean of ten independent runs of the single switch algorithm
with the same number of initial trajectories. The classical transport is discretized
by a symplectic fourth order Runge Kutta scheme.

After time t = 0.6 the wave function enters the crossing region and then the
upper level population drops down to 0.86. While running downhill the eigenvalue
surface, the momentum expectation value of the upper level monotonically increases
up to 1.6. On the other side of the crossing, the upper surface has a positive slope,
and the momentum expectation gradually decreases down to 0.8. The surface
hopping algorithm computes the lower level population with an maximal error
of 0.075 occurring when the wave function passes the crossing, see Figure 1(c).
Afterwards the population error drops down to 0.03. The accuracy of the population
is rather insensitive to the drift. However, the lower level momentum expectation
loses accuracy by a factor of eight when supressing the drift.

4. Theoretical justifications

The single switch algorithm follows ideas introduced by the second author with
S. Teufel in [17] which initiated the application of theoretical work on conical in-
tersections by the first author and P. Gérard in [5]. The rigorous derivation of
the algorithm has been performed in the context of codimension 2 crossings in [7]
and of avoided crossing in [8]. Both papers use a normal form stated by Y. Colin
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8 C. FERMANIAN AND C. LASSER

de Verdière in [2] which reduces the initial Schrödinger equation in the transition
zone to the well-known Landau-Zener model studied in the 30’s (see [15] and [23]).
Then the transition rate Tε(q

∗, p∗) is a multidimensional version of the celebrated
Landau-Zener formula, see also [4].

4.1. Heuristic justification of the transition rate. The mathematical justifi-
cation of the transition rates relies on a normal form which reduces the mechanism
of the transitions to the one of the Landau-Zener model. A heuristic reduction
to the Landau-Zener system comes from linearization along a trajectory. Let us
suppose that we have an avoided crossing with minimal gap of size δ at the point q∗

such that

γ(q∗) = δγ∗ +O(δ2), β(q∗) = 0.

We suppose δ small, in particular δ ≪ √
ε. For simplicity, we also assume α = 0

and we consider a plus trajectory arriving at time t∗ = 0 in (q∗, p∗). We perform a
Taylor expansion close to t = 0 of the function H(q+(t), p+(t)), where

H(q, p) :=
|p|2
2

+ V (q).

We obtain

H(q+(t), p+(t)) =

( |p∗|2
2

+ tf∗

)
Id +

(
t β∗ δγ∗

δγ∗ −t β∗

)
+O(δ2 + t2),

where

f∗ = −p∗ · ∇λ+(q∗), β∗ = p∗ · ∇β(q∗).
By the non-degeneracy assumption (1.4), we have p · ∇β(q) 6= 0 close to (q∗, p∗),
and therefore β∗ 6= 0; we suppose β∗ > 0 and we set

s =
t√
ε

√
β∗, η =

δ√
ε

γ∗√
β∗
,

ψε(t, q) = e−i(t|p∗|2+t2f∗)/(2ε)uε(s, η).

Then the Schrödinger equation (1.2) reduces to the Landau-Zener system

(4.1) i∂su
ε −

(
s η
η −s

)
uε = 0,

where, strictly speaking, the right-hand side is not 0 but O(
√
ε) locally. The evo-

lution of uε is well-known:

uε(s, η) =

(
eis

2 |s|iη
2/2

αε
1,±(η)

e−is2/2 |s|−iη2/2 αε
2,±(η)

)
+ o(1) as s→ ±∞,

where αε
1,± characterizes the ±-mode for s > 0 and αε

2,± the ∓-mode for s < 0.
Besides,

(
αε
1,+

αε
2,+

)
=

(
a(η) −b(η)
b(η) a(η)

)(
αε
1,−

αε
2,−

)
with a(η) = e−πη2/2.

The transition coefficient for the Landau-Zener system is

TLZ(η) = a(η)2 = e−πη2

.

Via

η =
δ√
ε

γ∗√
β∗

=
1

2
√
ε

g(q∗)√
p∗ · ∇qβ(q∗)

+O(δ2)
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SINGLE SWITCH SURFACE HOPPING FOR MOLECULAR QUANTUM DYNAMICS 9

we obtain

TLZ(η) = exp

(
− π

4ε

g(q∗)2

|p∗ · ∇β(q∗)|

)
(1 + o(1)) = Tε(q

∗, p∗)(1 + o(1)).

4.2. Range of validity of the algorithm. We now focus on the specific assump-
tions for proving a rigorous mathematical derivation in the context of codimension 2
crossings (see [7]) or avoided crossings (see [8]). If those are not satisifed, the ap-
proximation is no longer valid, as shown by the examples in [8]. We choose R > 0
fixed and assume that the transition region

Uε = {q ∈ Rd, g(q) ≤ R
√
ε}

is compact. Morover, we suppose:

• The test function a ∈ C∞
c

(
R2d

)
defining the expectation value of interest

must have its support away from the transition region Uε, since the non-
adiabatic transitions are only described effectively by the hopping mecha-
nism.

• The initial data (ψε
0)ε>0 are associated with one specific mode, let’s say

plus, localized away from the transition region Uε and away from the set,
which contains the points issuing classical trajectories, which are degenerate
in the sense, that

(p · ∇β(q), p · ∇γ(q)) = 0

when reaching a local minimal gap in Uε. This assures the reduction to the
Landau-Zener model (4.1).

• Within the time-interval [0, tf ], each of the plus-trajectories arriving at
the support of the observable at time tf has performed at most one jump
possibly generating minus-trajectories which have not jumped at all. These
assumptions are needed, since possible interferences between Π+ψε(t) and
Π−ψε(t) in the transition region are not resolved due to the neglect of the
off-diagonal components of the Wigner transform in the approximation.

We emphasize, that our approximation does not apply to the degenerate situation
where Hamiltonian trajectories arrive near the crossing with zero momentum, since
then (p∗ ·∇β(q∗), p∗ ·∇γ(q∗)) = 0. So far, the are only few mathematical results on
degenerate crossings, see e.g. [3] for resolvant estimates for degenerate codimension
one crossings.

4.3. Adiabatic situations. We now consider two adiabatic situations with cross-
ings: diagonal potentials and smoothly diagonalizable ones. We first suppose that
γ(q) = 0 for all q ∈ Rd. Then, the gap is given by g(q) = |β(q)|, the crossing
set is S = {q ∈ Rd; β(q) = 0}, and the genericity assumption (1.4) writes as
p · ∇β(q) 6= 0. Moreover, the jump criterium (2.1) becomes

β(q∗) p∗ · ∇β(q∗) = 0,

and there are only jumps at the points where β(q∗) = 0, which are in the crossing
set. Therefore, the transition rate is Tε(q

∗, p∗) = 1: The energy propagates along
the trajectories associated with the eigenvalues α(q)±|β(q)| with switches form the
plus to minus (or conversely) at each crossing point: The resulting curves are the
Hamiltonain trajectories associated with α(q) + β(q) and α(q) − β(q). Therefore,
our algorithm respects the adiabatic theorem for diagonal potentials.
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Let us now consider a potential V which has smooth eigenprojectors and smooth
eigenvalues with a non-empty crossing set (this happens for example for codimen-
sion 1 crossings, see [13]). The matrix V (q) now writes

V (q) = α(q) Id +
1

2
g(q)

(
Π+(q)−Π−(q)

)

with smooth functions g(q), Π+(q) and Π−(q). Therefore, one can find a smooth
normed vector e(q) such that Π+(q) − Π−(q) = Id − 2 e(q) ⊗ e(q), and it is not
difficult to see that such a matrix writes

Π+(q)−Π−(q) =

(
cos θ(q) sin θ(q)
sin θ(q) −cos θ(q)

)

for a smooth function θ(q). Therefore,

β(q) =
1

2
g(q) cos θ(q) and γ(q) =

1

2
g(q) sin θ(q),

and the genericity condition (1.4) implies

p · ∇g(q) 6= 0

for q ∈ Uε. Hence, the jump criterimum (2.1) is satisfied only for points in the
crossing set, where the transition rate is Tε(q

∗, p∗) = 1. Here again, the surface
hopping description preserves the adiabatic theorem: The quantities wε

± propagate
along the smooth trajectories associated with α(q) ± g(q).

5. Generalizations

It is also possible to generalize the algorithm to potentials with crossings of
three eigenvalues such as Pseudo-Jahn Taller’s potentials and to potentials where
the eigenvalues are of multiplicity 2 (Hagedorn’s potential). We now discuss these
issues.

5.1. Twofold eigenvalues. In the monograph [10], Hagedorn derives potentials

Vhag(q) = α(q)Id +

(
V0(q) 02

02 V0(q)

)
,

which are 4 by 4 matrices with twofold eigenvalues λ+(q) and λ−(q): their crossing
set is of codimension two, three or five. For these models, the solution to the
Schrödinger equation

(5.1)

{
iε∂tψ

ε = − ε2

2 ∆qψ
ε + Vhag(q)ψ

ε,
ψε
t=0 = ψε

0 ∈ L2(Rd,C4),

is a vector of C4. The fact that the eigenspaces are twofold implies that the
diagonal parts of the Wigner transform W ε(ψε(t)) are no longer characterized by
their traces and one has to work with the matrices Π±W ε(ψε(t))Π± themselves.
For considering matrix valued observables

a(q, p) = a+(q, p)Π+(q) + a−(q, p)Π−(q)

the single switch algorithm has to be modified as follows (see also [7]). For simplic-
ity, we still consider initial data localized on the plus level:
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(1) The initial sampling works with the four-by-four matrix Π+(W ε(ψε
0))Π

+

and produces phase space points (q+j , p
+
j ) ∈ R2d with associated matrix-

valued weights W+
j ∈ C4,4,

(q+j , p
+
j ,W

+
j ), 1 ≤ j ≤ N+(0).

(2) Classical transport by q̇+ = p+, ṗ+ = −∇qλ
+(q+),

(q+j (t), p
+
j (t)), 1 ≤ j ≤ N+(0).

(3) Possibility of surface hopping when a trajectory attains a local minimal
gap with transition probability Tε(q

∗, p∗). If the trajectory remains on
the same level, one conjugates the weight with a unitary matrix R(q∗, p∗).
(A precise formula for this matrix is given in [7].) That is, a remaining
trajectory carries the weight

R(q∗, p∗)W+
j R(q∗, p∗).

(4) Computation of final expectation values via phase space summation.

The new phenomenon is the conjugation by the matrix R(q∗, p∗) which ensures
that the transported matrix is correctly polarized after passing the crossing.

5.2. Pseudo Jahn-Teller Hamiltonian. Let us suppose that the potential in the
Schrödinger equation is given by

V (q) =




q1 0 q2/
√
2

0 −q1 q2/
√
2

q2/
√
2 q2/

√
2 0


 .

The wave function is now a vector of C3 and we have three modes 0,
√
q21 + q22

and −
√
q21 + q22 which interact together. Surface hopping extends to this context,

which is supported by the mathematical results of [9]. Beginning with initial data
localised on the plus level, at the minimal gap (which is evaluated by the function
|q|), one generates two trajectories: one for the minus level and one for the 0-level.
The transitions probabilities of the underlying model problem have been calculated
by Brundobler and Elser (see [1]). However, for the moment, the generalization to
more general potentials

VPJT (q) = α(q)Id +




β(q) 0 γ(q)
0 −β(q) γ(q)

γ(q) γ(q) 0




is not clear.

6. Conclusion

The single switch algorithm has a rigorous mathematical derivation which also
provides asymptotic error estimates (see [7] and [8]); this analysis has been carried
out in the context of codimension 2 crossings and avoided ones. However, the
algorithm can be implemented de facto in more general situations and even gives
leading order approximations in adiabatic situations.

The single switch algorithm is a surface hopping algorithm in the continuity of
the first one introduced by Tully and Preston in the seventies (see [20, 21]). Since
surface hopping schemes are applicable in high dimensional configuration spaces,
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as soon as the sampling of the initial data is achieved, they are very popular for
simulating non-adiabatic dynamics.

The specific feature of the single switch algorithm is its hopping criterium. Non-
adiabatic transitions are only allowed at local minimal surface gaps for sufficiently
small gaps. In that respect, the surface hopping algorithm of Voronin, Marques and
Varandas (see [22]) is the algorithm in the chemical literature, which is closest to
the single switch approach. Most of the well-established surface hopping schemes
allow for non-adiabatic transitions at any time (see [16] for a comparison).

The main open problem are interlevel interferences near the crossing: How does
one resolve the dynamics of two wave packets arriving in the transition region on
two different levels and interacting with each other? One can construct specific
initial data (see [4]) such that the algorithmic description presented here is no
longer valid and produces wrong numerical results [8].
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(1998).

[12] G. A. Hagedorn, A. Joye: Molecular propagation through small avoided crossings of electron
energy levels. Rev. Math. Phys., 1, No1, p. 41-101 (1999).

[13] T. Jecko: Non-trapping condition for semiclassical Schrödinger operators with matrix-valued
potentials. Math. Phys. Electronic Journal 11 (2005), no. 2.
Erratum: Math. Phys. Electronic Journal, No. 3, vol. 13 (2007).

[14] S. Kube, C. Lasser, M.Weber: Monte Carlo sampling of Wigner functions and surface hopping
quantum dynamics, J. Comput. Phys. 228, p. 1947-1962 (2009).

[15] L. Landau: Collected papers of L. Landau, Pergamon Press (1965).
[16] C. Lasser, T. Swart: Single switch surface hopping for a model of pyrazine, J. Chem. Phys.

129 (2008).

[17] C. Lasser, S. Teufel: Propagation through Conical Crossings: an Asymptotic Semigroup,
Comm. Pure Appl. Math. 58, 9, p. 1188-1230 (2005).

[18] A. Martinez, V. Sordoni: Twisted Pseudodifferential Calculus and Application to the Quan-
tum Evolution of Molecules, Memoirs of American Mathematical Society, 200, p. 1- 82 (2009).

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



SINGLE SWITCH SURFACE HOPPING FOR MOLECULAR QUANTUM DYNAMICS 13

[19] H. Spohn, S. Teufel: Adiabatic decoupling and time-dependent Born-Oppenheimer theory,
Commun. Math. Phys. 224, p. 113–132 (2001).

[20] J. Tully, R. Preston: Trajectory surface hopping approach to nonadiabatic molecular colli-
sions: the reaction of H+ with D2, J. Chem. Phys. 55, 2, p. 562–572 (1971).

[21] J. Tully: Molecular dynamics with electronic transitions, J. Chem. Phys. 93, 2, p. 1061–1071
(1994).

[22] A. Voronin, J. Marques, and A. Varandas, J. Phys. Chem. 102 (1998).
[23] C. Zener: Non-adiabatic crossing of energy levels, Proc. Roy. Soc. Lond. 137, p. 696–702

(1932).

(C. Fermanian) LAMA UMR CNRS 8050, Université Paris EST, 61, avenue du Général
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